
www.manaraa.com

Introduction	to	Software	Engineering/Print	version

Table	of	contents

Preface

Introduction
History
Software	Engineer

Introduction
Methodology
V-Model
Agile	Model
Standards
Life	Cycle
Rapid	Application	Development
Extreme	Programming

Requirements
Requirements	Management
Specification

Introduction
Design
Design	Patterns
Anti-Patterns

Introduction
Models	and	Diagrams
Examples

Introduction
Code	Convention
Good	Coding
Documentation

Introduction
Unit	Tests

Software	Engineering

Process	&	Methodology

Planning

Architecture	&	Design

UML

Implementation

Testing

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Preface
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Introduction
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/History
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Software_Engineer
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Process
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Process/Methodology
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Process/V-Model
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Process/Agile_Model
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Process/Standards
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Process/Life_Cycle
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Process/Rapid_Application_Development
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Process/Extreme_Programming
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Planning/Requirements
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Planning/Requirements_Management
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Planning/Specification
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Architecture
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Architecture/Design
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Architecture/Design_Patterns
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Architecture/Anti-Patterns
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/UML/Introduction
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/UML
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/UML/Examples
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Implementation
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Implementation/Code_Convention
https://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Implementation/Good_Coding&action=edit&redlink=1
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Implementation/Documentation
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Testing
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Testing/Unit_Tests

www.manaraa.com

Profiling
Test-driven	Development
Refactoring

Introduction
Static	Analysis
Metrics
Metrics2
Visualization
Code	Review
Code	Inspection

Introduction
Maintenance
Evolution

Introduction
Software	Estimation
Cost	Estimation
Development	Speed

Introduction
Modelling	and	Case	Tools
Compiler
Debugger
IDE
GUI	Builder
Source	Control
Build	Tools
Software	Documentation
Static	Code	Analysis
Profiling
Code	Coverage
Project	Management
Continuous	Integration
Bug	Tracking
Decompiler
Obfuscation

Introduction
Reverse	Engineering
Round-trip	Engineering

Introduction

Software	Quality

Deployment	&	Maintenance

Project	Management

Tools

Re-engineering

Other

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Testing/Profiling
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Testing/Test-driven_Development
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Testing/Refactoring
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Quality
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Quality/Static_Analysis
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Quality/Metrics
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Quality/Metrics2
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Quality/Visualization
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Quality/Code_Review
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Quality/Code_Inspection
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Deployment
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Deployment/Maintenance
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Deployment/Evolution
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Project_Management
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Project_Management/Software_Estimation
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Project_Management/Cost_Estimation
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Project_Management/Development_Speed
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/Modelling_and_Case_Tools
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/Compiler
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/Debugger
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/IDE
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/GUI_Builder
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/Source_Control
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/Build_Tools
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/Software_Documentation
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/Static_Code_Analysis
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/Profiling
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/Code_Coverage
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/Project_Management
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/Continuous_Integration
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/Bug_tracking_system
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/Decompiler
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/Obfuscation
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Reengineering
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Reengineering/Reverse_Engineering
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Reengineering/Round-trip_Engineering
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Other

www.manaraa.com

Editors

Authors

When	preparing	an	undergraduate	class	on	Software	Engineering,	I	found	that	there	are	a	lot	of	good	articles	in
Wikipedia	covering	different	aspects	related	to	software	engineering.	For	a	beginner,	however,	it	is	not	so	easy	to
find	her	or	his	way	through	that	jungle	of	articles.	It	is	not	evident	what	is	important	and	what	is	less	relevant,
where	to	start	and	what	to	skip	in	a	first	reading.	Also,	these	articles	contain	too	much	information	and	too	few
examples.	Hence	the	idea	for	this	book	came	about:	to	take	the	relevant	articles	from	Wikipedia,	combine	them,
edit	them,	fill	in	the	missing	pieces,	put	them	in	context	and	create	a	wikibook	out	of	them.

The	hope	is	that	this	can	be	used	as	a	textbook	for	an	introductory	software	engineering	class.	The	advantage	for
the	instructor	is	that	she	can	just	pick	the	pieces	that	fit	into	her	course	and	create	a	collection.	The	advantage
for	the	student	is	that	he	can	have	a	printed	or	pdf	version	of	the	textbook	at	a	reasonable	price	(free)	and	with
reasonable	licenses	(creative	commons).

As	for	the	philosophy	behind	this	book:	brevity	is	preferred	to	completeness,	and	examples	are	preferred	to	theory.
If	 this	 effort	was	 successful,	 you	be	 the	 judge	 of	 it,	 and	 if	 you	have	 suggestions	 for	 improvement,	 just	 use	 the
’Edit’	button!

My	special	thanks	go	to	Adrignola	and	Kayau	who	did	the	tedious	work	of	importing	the	original	articles	(with	all
their	history)	from	Wikipedia	to	Wikibooks!

Software	Engineering

This	book	is	an	introduction	to	the	art	of	software	engineering.	It	is	intended	as	a	textbook	for	an	undergraduate
level	course.

Software	engineering	is	about	teams.	The	problems	to	solve	are	so	complex	or	large,	that	a	single	developer	cannot
solve	them	anymore.	Software	engineering	is	also	about	communication.	Teams	do	not	consist	only	of	developers,
but	also	of	testers,	architects,	system	engineers,	customer,	project	managers,	etc.	Software	projects	can	be	so	large
that	 we	 have	 to	 do	 careful	 planning.	 Implementation	 is	 no	 longer	 just	 writing	 code,	 but	 it	 is	 also	 following
guidelines,	writing	documentation	and	also	writing	unit	tests.	But	unit	tests	alone	are	not	enough.	The	different
pieces	have	to	fit	together.	And	we	have	to	be	able	to	spot	problematic	areas	using	metrics.	They	tell	us	 if	our
code	 follows	 certain	 standards.	Once	we	are	 finished	 coding,	 that	does	not	mean	 that	we	are	 finished	with	 the
project:	 for	 large	 projects	maintaining	 software	 can	 keep	many	people	 busy	 for	 a	 long	 time.	 Since	 there	 are	 so
many	 factors	 influencing	 the	 success	 or	 failure	 of	 a	 project,	 we	 also	 need	 to	 learn	 a	 little	 about	 project
management	and	its	pitfalls,	but	especially	what	makes	projects	successful.	And	last	but	not	least,	a	good	software
engineer,	like	any	engineer,	needs	tools,	and	you	need	to	know	about	them.

In	your	beginning	semesters	you	were	coding	as	individuals.	The	problems	you	were	solving	were	small	enough	so
one	person	could	master	them.	In	the	real	world	this	is	different:-	the	problem	sizes	and	time	constraints	are	such
that	only	teams	can	solve	those	problems.

For	 teams	 to	work	effectively	 they	need	a	 language	 to	communicate	 (UML).	Also	 teams	do	not	consist	only	of
developers,	 but	 also	 of	 testers,	 architects,	 system	engineers	 and	most	 importantly	 the	 customer.	 So	we	need	 to
learn	about	what	makes	good	teams,	how	to	communicate	with	the	customer,	and	how	to	document	not	only	the
source	code,	but	everything	related	to	the	software	project.

In	previous	courses	we	learned	languages,	such	as	Java	or	C++,	and	how	to	turn	ideas	into	code.	But	these	ideas
are	 independent	 of	 the	 language.	With	Unified	Modeling	 Language	 (UML)	we	will	 see	 a	way	 to	 describe	 code
independently	of	language,	and	more	importantly,	we	learn	to	think	in	one	higher	level	of	abstraction.	UML	can
be	an	invaluable	communication	and	documentation	tool.

We	 will	 learn	 to	 see	 the	 big	 picture:	 patterns.	 This	 gives	 us	 yet	 one	 higher	 level	 of	 abstraction.	 Again	 this
increases	our	vocabulary	to	communicate	more	effectively	with	our	peers.	Also,	it	is	a	fantastic	way	to	learn	from
our	seniors.	This	is	essential	for	designing	large	software	systems.

Also	just	being	able	to	write	software,	doesn’t	mean	that	the	software	is	any	good.	Hence,	we	will	discover	what
makes	good	software,	and	how	to	measure	software	quality.	On	one	hand	we	should	be	able	to	analyse	existing
source	 code	 through	 static	 analysis	 and	measuring	metrics,	 but	 also	how	do	we	guarantee	 that	 our	 code	meets
certain	quality	standards?	Testing	is	also	important	in	this	context,	it	guarantees	high	quality	products.

References

Editors

Authors

License

Preface

Introduction

Developers	Work	in	Teams

New	Language

Measurement

https://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Editors&action=edit&redlink=1
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Authors
https://en.wikibooks.org/wiki/Wikibooks:Collections
https://en.wikibooks.org/wiki/User:Adrignola
https://en.wikibooks.org/wiki/User:Kayau

www.manaraa.com

Up	to	now,	you	may	have	come	to	know	about	an	IDE,	a	compiler	and	a	debugger.	But	there	are	many	more	tools
at	the	disposal	of	a	software	engineer.	There	are	tools	that	allow	us	to	work	in	teams,	to	document	our	software,
to	assist	and	monitor	the	whole	development	effort.	There	are	tools	for	software	architects,	tools	for	testing	and
profiling,	automation	and	re-engineering.

When	the	 first	modern	digital	computers	appeared	 in	the	early	1940s,[1]	the	 instructions	to	make	them	operate
were	 wired	 into	 the	 machine.	 At	 this	 time,	 people	 working	 with	 computers	 were	 engineers,	 mostly	 electrical
engineers.	 This	 hardware	 centric	 design	 was	 not	 flexible	 and	 was	 quickly	 replaced	 with	 the	 "stored	 program
architecture"	or	von	Neumann	architecture.	Thus	the	first	division	between	"hardware"	and	"software"	began	with
abstraction	being	used	to	deal	with	the	complexity	of	computing.

Programming	languages	started	to	appear	in	the	1950s	and	this	was	also	another	major	step	in	abstraction.	Major
languages	 such	 as	 Fortran,	 ALGOL,	 and	 COBOL	 were	 released	 in	 the	 late	 1950s	 to	 deal	 with	 scientific,
algorithmic,	 and	 business	 problems	 respectively.	 E.W.	 Dijkstra	 wrote	 his	 seminal	 paper,	 "Go	 To	 Statement
Considered	Harmful",[2]	 in	 1968	 and	 David	 Parnas	 introduced	 the	 key	 concept	 of	 modularity	 and	 information
hiding	in	1972[3]	to	help	programmers	deal	with	the	ever	 increasing	complexity	of	software	systems.	A	software
system	for	managing	the	hardware	called	an	operating	system	was	also	introduced,	most	notably	by	Unix	in	1969.
In	1967,	the	Simula	language	introduced	the	object-oriented	programming	paradigm.

These	 advances	 in	 software	 were	 met	 with	 more	 advances	 in	 computer	 hardware.	 In	 the	 mid	 1970s,	 the
microcomputer	was	introduced,	making	it	economical	for	hobbyists	to	obtain	a	computer	and	write	software	for	it.
This	in	turn	led	to	the	now	famous	Personal	Computer	(PC)	and	Microsoft	Windows.	The	Software	Development
Life	Cycle	or	SDLC	was	also	starting	to	appear	as	a	consensus	for	centralized	construction	of	software	in	the	mid
1980s.	 The	 late	 1970s	 and	 early	 1980s	 saw	 the	 introduction	 of	 several	 new	 Simula-inspired	 object-oriented
programming	languages,	including	Smalltalk,	Objective-C,	and	C++.

Open-source	software	started	to	appear	in	the	early	90s	in	the	form	of	Linux	and	other	software	introducing	the
"bazaar"	or	decentralized	style	of	constructing	software.[4]	Then	the	World	Wide	Web	and	the	popularization	of
the	Internet	hit	in	the	mid	90s,	changing	the	engineering	of	software	once	again.	Distributed	systems	gained	sway
as	 a	 way	 to	 design	 systems,	 and	 the	 Java	 programming	 language	 was	 introduced	 with	 its	 virtual	 machine	 as
another	 step	 in	 abstraction.	 Programmers	 collaborated	 and	 wrote	 the	 Agile	 Manifesto,	 which	 favored	 more
lightweight	processes	to	create	cheaper	and	more	timely	software.

The	 current	 definition	 of	 software	 engineering	 is	 still	 being	 debated	 by	 practitioners	 today	 as	 they	 struggle	 to
come	up	with	ways	to	produce	software	that	is	"cheaper,	better,	faster".	Cost	reduction	has	been	a	primary	focus
of	the	IT	industry	since	the	1990s.	Total	cost	of	ownership	represents	the	costs	of	more	than	just	acquisition.	It
includes	things	like	productivity	impediments,	upkeep	efforts,	and	resources	needed	to	support	infrastructure.

1.	 Leondes	(2002).	intelligent	systems:	technology	and	applications.	CRC	Press.	ISBN	9780849311215.
2.	 Dijkstra,	E.	W.	(March	1968).	"Go	To	Statement	Considered	Harmful".	Wikipedia:Communications	of	the

ACM	11	(3):	147–148.	doi:10.1145/362929.362947.
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF.	Retrieved	2009-08-10.

3.	 Parnas,	David	(December	1972).	"On	the	Criteria	To	Be	Used	in	Decomposing	Systems	into	Modules".
Wikipedia:Communications	of	the	ACM	15	(12):	1053–1058.	doi:10.1145/361598.361623.
http://www.acm.org/classics/may96/.	Retrieved	2008-12-26.

4.	 Raymond,	Eric	S.	The	Cathedral	and	the	Bazaar	(http://www.catb.org/esr/writings/cathedral-bazaar/).	ed
3.0.	2000.

History	of	software	engineering	(http://en.wikipedia.org/wiki/History_of_software_engineering)

Software	 engineering	 is	 done	 by	 the	 software	 engineer,	 an	 engineer	 who	 applies	 the	 principles	 of	 software
engineering	to	the	design	and	development,	testing,	and	evaluation	of	software	and	systems	that	make	computers
or	anything	containing	software	work.	There	has	been	some	controversy	over	the	term	engineer[1],	since	it	implies
a	 certain	 level	 of	 academic	 training,	 professional	 discipline,	 adherence	 to	 formal	 processes,	 and	 especially	 legal
liability	that	often	are	not	applied	in	cases	of	software	development.	In	2004,	the	U.	S.	Bureau	of	Labor	Statistics
counted	 760,840	 software	 engineers	 holding	 jobs	 in	 the	 U.S.;	 in	 the	 same	 period	 there	 were	 some	 1.4	 million
practitioners	employed	in	the	U.S.	in	all	other	engineering	disciplines	combined.[2]

Prior	 to	 the	mid-1990s,	 software	 practitioners	 called	 themselves	 programmers	 or	developers,	 regardless	 of	 their
actual	jobs.	Many	people	prefer	to	call	themselves	software	developer	and	programmer,	because	most	widely	agree
what	these	terms	mean,	while	software	engineer	 is	 still	being	debated.	A	prominent	 computing	 scientist,	E.	W.
Dijkstra,	wrote	in	a	paper	that	the	coining	of	the	term	software	engineer	was	not	a	useful	term	since	it	was	an
inappropriate	analogy,	"The	existence	of	the	mere	term	has	been	the	base	of	a	number	of	extremely	shallow	--and

New	Tools

History

References

Further	Reading

Software	Engineer

Overview

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-1
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-2
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-3
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-4
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/9780849311215
https://en.wikipedia.org/wiki/Edsger_Dijkstra
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF
https://en.wikipedia.org/wiki/Communications_of_the_ACM
https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1145%2F362929.362947
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF
https://en.wikipedia.org/wiki/David_Parnas
http://www.acm.org/classics/may96/
https://en.wikipedia.org/wiki/Communications_of_the_ACM
https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1145%2F361598.361623
http://www.acm.org/classics/may96/
http://www.catb.org/esr/writings/cathedral-bazaar/
http://en.wikipedia.org/wiki/History_of_software_engineering
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-5
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-6

www.manaraa.com

false--	analogies,	which	just	confuse	the	issue...Computers	are	such	exceptional	gadgets	that	there	is	good	reason	to
assume	that	most	analogies	with	other	disciplines	are	too	shallow	to	be	of	any	positive	value,	are	even	so	shallow
that	they	are	only	confusing."[3]

The	term	programmer	has	often	been	used	to	refer	to	those	without	the	tools,	skills,	education,	or	ethics	to	write
good	quality	software.	In	response,	many	practitioners	called	themselves	software	engineers	to	escape	the	stigma
attached	to	the	word	programmer.

The	 label	 software	 engineer	 is	 used	 very	 liberally	 in	 the	 corporate	 world.	 Very	 few	 of	 the	 practicing	 software
engineers	actually	hold	Engineering	degrees	from	accredited	universities.	In	fact,	according	to	the	Association	for
Computing	Machinery,	"most	people	who	now	function	in	the	U.S.	as	serious	software	engineers	have	degrees	in
computer	science,	not	in	software	engineering".	[4]

About	half	of	all	practitioners	today	have	computer	science	degrees.	A	small,	but	growing,	number	of	practitioners
have	 software	 engineering	 degrees.	 In	 1987	 Imperial	 College	 London	 introduced	 the	 first	 three-year	 software
engineering	Bachelor's	degree	 in	 the	UK	and	the	world.	Since	 then,	 software	engineering	undergraduate	degrees
have	 been	 established	 at	 many	 universities.	 A	 standard	 international	 curriculum	 for	 undergraduate	 software
engineering	 degrees	 was	 recently	 defined	 by	 the	 ACM[5].	 As	 of	 2004,	 in	 the	 U.S.,	 about	 50	 universities	 offer
software	 engineering	degrees,	which	 teach	both	 computer	 science	 and	 engineering	principles	 and	practices.	ETS
University	 and	 UQAM	 were	 mandated	 by	 IEEE	 to	 develop	 the	 SoftWare	 Engineering	 BOdy	 of	 Knowledge
(SWEBOK)	 [6],	 which	 has	 become	 an	 ISO	 standard	 describing	 the	 body	 of	 knowledge	 covered	 by	 a	 software
engineer.

In	 business,	 some	 software	 engineering	 practitioners	 have	Management	 Information	 Systems	 (MIS)	 degrees.	 In
embedded	systems,	some	have	electrical	engineering	or	computer	engineering	degrees,	because	embedded	software
often	 requires	 a	 detailed	 understanding	 of	 hardware.	 In	 medical	 software,	 practitioners	 may	 have	 medical
informatics,	 general	 medical,	 or	 biology	 degrees.	 Some	 practitioners	 have	mathematics,	 science,	 engineering,	 or
technology	degrees.	Some	have	philosophy	(logic	in	particular)	or	other	non-technical	degrees,	and	others	have	no
degrees.

Most	 software	 engineers	 work	 as	 employees	 or	 contractors.	 They	 work	 with	 businesses,	 government	 agencies
(civilian	 or	military),	 and	non-profit	 organizations.	 Some	 software	 engineers	work	 for	 themselves	 as	 freelancers.
Some	 organizations	 have	 specialists	 to	 perform	 each	 of	 the	 tasks	 in	 the	 software	 development	 process.	 Other
organizations	 required	software	engineers	 to	do	many	or	all	of	 them.	 In	 large	projects,	people	may	specialize	 in
only	one	role.	In	small	projects,	people	may	fill	several	or	all	roles	at	the	same	time.

There	is	considerable	debate	over	the	future	employment	prospects	for	Software	Engineers	and	other	Information
Technology	(IT)	Professionals.	For	example,	an	online	futures	market	called	the	Future	of	IT	Jobs	in	America[7]
attempts	to	answer	whether	there	will	be	more	IT	jobs,	including	software	engineers,	in	2012	than	there	were	in
2002.

Some	students	 in	 the	developed	world	may	have	avoided	degrees	 related	to	software	engineering	because	of	 the
fear	of	offshore	outsourcing	and	of	being	displaced	by	 foreign	workers.[8]	Although	government	statistics	do	not
currently	 show	a	 threat	 to	 software	 engineering	 itself;	 a	 related	 career,	 computer	 programming,	 does	 appear	 to
have	been	affected.[9][10]	Some	career	 counselors	 suggest	a	 student	 to	also	 focus	on	 "people	 skills"	and	business
skills	rather	than	purely	technical	skills,	because	such	"soft	skills"	are	allegedly	more	difficult	to	offshore.[11]	It	is
the	quasi-management	aspects	of	software	engineering	that	appear	to	be	what	has	kept	it	from	being	impacted	by
globalization.[12]

1.	 Sayo,	Mylene.	"[http://www.peo.on.ca/enforcement/June112002newsrelease.html	What's	in	a	Name?	Tech
Sector	battles	Engineers	on	"software	engineering""].
http://www.peo.on.ca/enforcement/June112002newsrelease.html.	Retrieved	2008-07-24

2.	 Bureau	of	Labor	Statistics,	U.S.	Department	of	Labor,	USDL	05-2145:	Occupational	Employment	and	Wages,
November	2004	(ftp://ftp.bls.gov/pub/news.release/ocwage.txt)

3.	 http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD690.html	E.W.Dijkstra	Archive:	The
pragmatic	engineer	versus	the	scientific	designer

4.	 http://computingcareers.acm.org/?page_id=12	ACM,	Computing	-	Degrees	&	Careers,	Software	Engineering
5.	 http://sites.computer.org/ccse/	Curriculum	Guidelines	for	Undergraduate	Degree	Programs	in	Software
Engineering

6.	 http://www.computer.org/portal/web/swebok	Guide	to	the	Software	Engineering	Body	of	Knowledge
7.	 Future	of	IT	Jobs	in	America	(http://www.ideosphere.com/fx-bin/Claim?claim=ITJOBS)
8.	 As	outsourcing	gathers	steam,	computer	science	interest	wanes	(http://www.computerworld.com/printthis/200
6/0,4814,111202,00.html)

9.	 Computer	Programmers	(http://www.bls.gov/oco/ocos110.htm#outlook)

Education

Profession

References

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-7
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-8
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-9
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-10
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-11
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-12
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-13
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-14
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-15
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-16
http://www.peo.on.ca/enforcement/June112002newsrelease.html
http://www.peo.on.ca/enforcement/June112002newsrelease.html
ftp://ftp.bls.gov/pub/news.release/ocwage.txt
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD690.html
http://computingcareers.acm.org/?page_id=12
http://sites.computer.org/ccse/
http://www.computer.org/portal/web/swebok
http://www.ideosphere.com/fx-bin/Claim?claim=ITJOBS
http://www.computerworld.com/printthis/2006/0,4814,111202,00.html
http://www.bls.gov/oco/ocos110.htm#outlook

www.manaraa.com

10.	 Software	developer	growth	slows	in	North	America	|	InfoWorld	|	News	|	2007-03-13	|	By	Robert	Mullins,	IDG
News	Service	(http://www.infoworld.com/article/07/03/13/HNslowsoftdev_1.html)

11.	 Hot	Skills,	Cold	Skills	(http://www.computerworld.com/action/article.do?command=viewArticleTOC&special
ReportId=9000100&articleId=112360)

12.	 Dual	Roles:	The	Changing	Face	of	IT	(http://itmanagement.earthweb.com/career/article.php/3523066)

UML

Software	engineers	speak	a	funny	language	called	Unified	Modeling	Language,	or	UML	for	short.	Like	a	musician
has	to	learn	musical	notation	before	being	able	to	play	piano,	we	need	to	learn	UML	before	we	are	able	to	engineer
software.	UML	 is	useful	 in	many	parts	of	 the	 software	 engineering	process,	 for	 instance:	planning,	 architecture,
documentation,	or	reverse	engineering.	Therefore,	it	is	worth	our	efforts	to	know	it.

Designing	 software	 is	 a	 little	 like	writing	a	 screenplay	 for	 a	Hollywood	movie.	The	 characteristics,	 actions,	 and
interactions	 of	 the	 characters	 are	 carefully	 planned,	 as	 is	 the	 relevant	 components	 of	 their	 environment.	As	 an
introductory	example,	consider	our	friend	Bill,	a	customer,	who	is	at	a	restaurant	for	dinner.	His	waiter	is	Linus,
who	takes	the	orders	and	brings	the	food.	In	the	kitchen	is	Larry,	the	cook.	Steve	is	the	cashier.	In	this	way,	we've
provided	useful	and	easily	accessed	information	about	the	operation	of	a	restaurant	in	the	screenplay.

The	 use	 case	model	 is	 representation	 of	 the	 systems	 intended	 functions	 and	 its	 environment.The	 first	 thing	 a
software	engineer	does	is	to	draw	a	Use	Case	diagram.	All	the	actors	are	represented	by	little	stick	figures,	all	the
actions	are	represented	by	ovals	and	are	called	use	cases.	The	actors	and	use	cases	are	connected	by	lines.	Very
often	there	 is	also	one	or	more	system	boundaries.	Actors,	which	usually	are	not	part	of	the	system,	are	drawn
outside	the	system	area.

Use	 Case	 diagrams	 are	 very	 simple,	 so	 even	 managers	 can	 understand	 them.	 But	 they	 are	 very	 helpful	 in
understanding	the	system	to	be	designed.	They	should	list	all	parties	involved	in	the	system	and	all	major	actions
that	the	system	should	be	able	to	perform.	The	important	thing	about	them	is	that	you	don't	forget	anything,	it	is
less	important	that	they	are	super-detailed,	for	this	we	have	other	diagram	types.

Restaurant	Use	Case	Diagram.

Next,	we	will	draw	an	Activity	diagram.	The	Activity	diagram	gives	more	detail	to	a	given	use	case	and	it	often
depicts	the	flow	of	information,	hence	it	is	also	called	a	Flowchart.	Where	the	Use	Case	diagrams	has	no	timely
order,	the	Activity	diagram	has	a	beginning	and	an	end,	and	it	also	depicts	decisions	and	repetitions.

If	 the	Use	Case	diagram	names	 the	actors	and	gives	us	 the	headings	 for	 each	 scene	 (use	case)	of	our	play,	 the
Activity	diagram	tells	the	detailed	story	behind	each	scene.	Some	managers	may	be	able	to	understand	Activity
diagrams,	but	don't	count	on	it.

Introduction

Use	Case	Diagram

Activity	Diagram

http://www.infoworld.com/article/07/03/13/HNslowsoftdev_1.html
http://www.computerworld.com/action/article.do?command=viewArticleTOC&specialReportId=9000100&articleId=112360
http://itmanagement.earthweb.com/career/article.php/3523066
https://commons.wikimedia.org/wiki/File:Use_Case_Diagram.png

www.manaraa.com

Restaurant	Activity	Diagram.

Once	 we	 are	 done	 drawing	 our	 Activity	 diagrams,	 the	 next	 step	 of	 refinement	 is	 the
Sequence	 diagram.	 In	 this	 diagram	we	 list	 the	 actors	 or	 objects	 horizontally	 and	 then	we
depict	 the	messages	going	back	and	 forth	between	the	objects	by	horizontal	 lines.	Time	 is
always	progressing	downwards	in	this	diagram.

The	 Sequence	 diagram	 is	 a	 very	 important	 step	 in	 what	 is	 called	 the	 process	 of	 object-
oriented	 analysis	 and	 design.	 This	 diagram	 is	 so	 important,	 because	 on	 the	 one	 hand	 it
identifies	our	objects/classes	and	on	the	other	hand	it	also	gives	us	the	methods	for	each	of
those	 classes,	 because	 each	message	 turns	 into	 a	method.	 Sequence	 diagrams	 can	 become
very	large,	since	they	basically	describe	the	whole	program.	Make	sure,	you	cover	every	path
in	 your	 Sequence	 diagrams,	 but	 try	 to	 avoid	 unnecessary	 repetition.	 Managers	 will	 most
likely	not	understand	Sequence	diagrams.

The	Collaboration	diagram	is	an	intermediate	step	to	get	us	from	the	Sequence	diagram	to
the	 Class	 diagram.	 It	 is	 similar	 to	 the	 Sequence	 diagram,	 but	 it	 has	 a	 different	 layout.
Instead	of	worrying	about	the	timeline,	we	worry	about	the	interactions	between	the	objects.
Each	 object	 is	 represented	 by	 a	 box,	 and	 interactions	 between	 the	 objects	 are	 shown	 by
arrows.

This	diagram	shows	the	 responsibility	of	objects.	 If	an	object	has	 too	much	responsibility,
meaning	there	are	too	many	lines	going	in	and	out	of	a	box,	probably	something	is	wrong	in
your	design.	Usually	you	would	want	 to	 split	 the	box	 into	 two	or	more	 smaller	boxes.	At
this	 stage	 in	 your	 design,	 this	 can	 still	 be	 done	 easily.	 Try	 to	 do	 that	 once	 you	 started
coding,	or	even	later,	it	will	become	a	nightmare.

For	us	as	software	engineers,	at	least	the	object-oriented	kind,	the	Class	diagram	is	the	most
important	 one.	 A	 Class	 diagram	 consists	 of	 classes	 and	 lines	 between	 them.	 The	 classes
themselves	 are	 drawn	 as	 boxes,	 having	 two	 compartments,	 one	 for	methods	 and	 one	 for
attributes.

You	start	with	the	Collaboration	diagram,	and	the	first	thing	you	do	is	take	all	the	boxes
and	 call	 them	classes	now.	Next,	 instead	of	having	many	 lines	 going	between	 the	 objects,
you	replace	them	by	one	line.	But	for	every	line	you	remove,	you	must	add	a	method	entry
to	the	class's	method	compartment.	So	at	this	stage	the	Class	diagram	looks	quite	similar	to
the	Collaboration	diagram.

The	things	that	make	a	Class	diagram	different	are	the	attributes	and	the	fact	that	there	is	not	only	one	type	of
line,	 but	 several	 different	 kinds.	As	 for	 the	 attributes,	 you	must	 look	 at	 each	 class	 carefully	 and	 decide	which
variables	are	needed	for	this	class	to	function.	If	the	class	is	merely	a	data	container	this	is	easy,	if	the	class	does
some	more	complicated	things,	this	may	not	be	so	easy.

As	for	the	lines,	we	call	them	relationships	between	the	objects,	and	basically	there	are	three	major	kinds:

the	association	(has	a):	a	static	relationship,	usually	one	class	is	attribute	of	another	class,	or	one	class	uses
another	class
the	aggregation	(consists	of):	for	instance	an	order	consists	of	order	details

Sequence	Diagram

File:Restaurant
Sequence

Diagram.png
Restaurant
Sequence
Diagram.

Collaboration	Diagram

File:Restaurant
Collaboration
Diagram.png

Restaurant
Collaboration
Diagram.

Class	Diagram

File:Restaurant
Class

Diagram.png
Restaurant	Class
Diagram.

https://commons.wikimedia.org/wiki/File:Activity_Diagram.png
https://commons.wikimedia.org/wiki/Special:UploadWizard?uselang=en&wpDestFile=Restaurant_Sequence_Diagram.png
https://commons.wikimedia.org/wiki/Special:UploadWizard?uselang=en&wpDestFile=Restaurant_Collaboration_Diagram.png
https://commons.wikimedia.org/wiki/Special:UploadWizard?uselang=en&wpDestFile=Restaurant_Class_Diagram.png

www.manaraa.com

and	the	inheritance	(is	a):	describes	a	hierarchy	between	classes
Now	with	the	Class	diagram	finished,	you	can	lean	back:	if	you	have	a	good	UML	Modelling	tool	you	simply	click
on	 the	 'Generate	Code'	 button	 and	 it	will	 create	 stubs	 for	 all	 the	 classes	with	methods	 and	attributes	 in	 your
favorite	programming	language.	By	the	way,	don't	expect	your	manager	to	understand	class	diagrams.

The	Unified	Modeling	Language	is	a	standardized	general-purpose	modeling	language	and	nowadays	is	managed	as
a	de	facto	industry	standard	by	the	Object	Management	Group	(OMG).[1]	UML	includes	a	set	of	graphic	notation
techniques	to	create	visual	models	of	software-intensive	systems.[2]

UML	was	 invented	 by	 the	Three	Amigos:	 James	 Rumbaugh,	Grady	 Booch	 and	 Ivar	 Jacobson.	 After	 Rational
Software	Corporation	hired	James	Rumbaugh	from	General	Electric	in	1994,	the	company	became	the	source	for
the	 two	most	 popular	 object-oriented	modeling	 approaches	 of	 the	 day:	Rumbaugh's	Object-modeling	 technique
(OMT),	which	was	better	for	object-oriented	analysis	(OOA),	and	Grady	Booch's	Booch	method,	which	was	better
for	object-oriented	design	 (OOD).	They	were	 soon	assisted	 in	 their	 efforts	by	 Ivar	Jacobson,	 the	 creator	of	 the
object-oriented	 software	 engineering	 (OOSE)	 method.	 Jacobson	 joined	 Rational	 in	 1995,	 after	 his	 company,
Objectory	AB,[3]	was	acquired	by	Rational.

The	Unified	Modeling	Language	(UML)	is	used	to	specify,	visualize,	modify,	construct	and	document	the	artifacts
of	an	object-oriented	software-intensive	system	under	development.[4]	UML	offers	a	standard	way	to	visualize	a
system's	 architectural	 blueprints,	 including	 elements	 such	 as	 activities,	 actors,	 business	 processes,	 database
schemas,	components,	programming	language	statements,	and	reusable	software	components.[5]

UML	 combines	 techniques	 from	 data	modeling	 (entity	 relationship	 diagrams),	 business	 modeling	 (work	 flows),
object	modeling,	and	component	modeling.	It	can	be	used	with	all	processes,	throughout	the	software	development
life	cycle,	and	across	different	implementation	technologies.[6]

It	is	important	to	distinguish	between	the	UML	model	and	the	set	of	diagrams	of	a	system.	A	diagram	is	a	partial
graphic	representation	of	a	system's	model.	The	model	also	contains	documentation	that	drive	the	model	elements
and	diagrams.

UML	diagrams	represent	two	different	views	of	a	system	model	[7]:

Static	(or	structural)	view:	emphasizes	the	static	structure	of	the	system	using	objects,	attributes,	operations
and	relationships.	The	structural	view	includes	class	diagrams	and	composite	structure	diagrams.
Dynamic	(or	behavioral)	view:	emphasizes	the	dynamic	behavior	of	the	system	by	showing	collaborations
among	objects	and	changes	to	the	internal	states	of	objects.	This	view	includes	sequence	diagrams,	activity
diagrams	and	state	machine	diagrams.

In	 UML	 2.2	 there	 are	 14	 types	 of	 diagrams	 divided	 into	 two	 categories.[8]	 Seven	 diagram	 types	 represent
structural	 information,	 and	 the	 other	 seven	 represent	 general	 types	 of	 behavior,	 including	 four	 that	 represent
different	 aspects	 of	 interactions.	 These	 diagrams	 can	 be	 categorized	 hierarchically	 as	 shown	 in	 the	 following
diagram:

Structure	 diagrams	 emphasize	 the	 things	 that	 must	 be	 present	 in	 the	 system	 being	 modeled.	 Since	 structure
diagrams	represent	the	structure,	they	are	used	extensively	in	documenting	the	software	architecture	of	software

UML	Models	and	Diagrams

History

Definition

Models	and	Diagrams

Diagrams	Overview

Structure	Diagrams

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-17
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-18
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-19
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Foldoc01-20
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-OMG00-21
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-22
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-23
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-24
https://commons.wikimedia.org/wiki/File:Uml_diagram2.png

www.manaraa.com

Structure	 diagrams	 emphasize	 the	 things	 that	 must	 be	 present	 in	 the	 system	 being	 modeled.	 Since	 structure
diagrams	represent	the	structure,	they	are	used	extensively	in	documenting	the	software	architecture	of	software
systems.

Class	diagram:	describes	the	structure	of	a	system	by	showing	the	system's	classes,	their	attributes,	and	the
relationships	among	the	classes.
Component	diagram:	describes	how	a	software	system	is	split	up	into	components	and	shows	the	dependencies
among	these	components.
Composite	structure	diagram:	describes	the	internal	structure	of	a	class	and	the	collaborations	that	this
structure	makes	possible.
Deployment	diagram:	describes	the	hardware	used	in	system	implementations	and	the	execution	environments
and	artifacts	deployed	on	the	hardware.
Object	diagram:	shows	a	complete	or	partial	view	of	the	structure	of	a	modeled	system	at	a	specific	time.
Package	diagram:	describes	how	a	system	is	split	up	into	logical	groupings	by	showing	the	dependencies	among
these	groupings.
Profile	diagram:	operates	at	the	metamodel	level	to	show	stereotypes	as	classes	with	the	<<stereotype>>
stereotype,	and	profiles	as	packages	with	the	<<profile>>	stereotype.	The	extension	relation	(solid	line	with
closed,	filled	arrowhead)	indicates	what	metamodel	element	a	given	stereotype	is	extending.

Behavior	diagrams	emphasize	what	must	happen	in	the	system	being	modeled.	Since	behavior	diagrams	illustrate
the	behavior	of	a	system,	they	are	used	extensively	to	describe	the	functionality	of	software	systems.

Use	case	diagram:	describes	the	functionality	provided	by	a	system	in	terms	of	actors,	their	goals	represented
as	use	cases,	and	any	dependencies	among	those	use	cases.
Activity	diagram:	describes	the	business	and	operational	step-by-step	workflows	of	components	in	a	system.
An	activity	diagram	shows	the	overall	flow	of	control.
state	machine	diagram:	describes	the	states	and	state	transitions	of	the	system.

Interaction	diagrams,	a	subset	of	behaviour	diagrams,	emphasize	the	flow	of	control	and	data	among	the	things	in
the	system	being	modeled:

Sequence	diagram:	shows	how	objects	communicate	with	each	other	in	terms	of	a	sequence	of	messages.	Also
indicates	the	lifespans	of	objects	relative	to	those	messages.
Communication	diagram:	shows	the	interactions	between	objects	or	parts	in	terms	of	sequenced	messages.
They	represent	a	combination	of	information	taken	from	Class,	Sequence,	and	Use	Case	Diagrams	describing
both	the	static	structure	and	dynamic	behavior	of	a	system.
Interaction	overview	diagram:	provides	an	overview	in	which	the	nodes	represent	communication	diagrams.
Timing	diagrams:	a	specific	type	of	interaction	diagram	where	the	focus	is	on	timing	constraints.

To	draw	UML	diagrams,	all	you	need	is	a	pencil	and	a	piece	of	paper.	However,	for	a	software	engineer	that	seems
a	little	outdated,	hence	most	of	us	will	use	tools.	The	simplest	tools	are	simply	drawing	programs,	 like	Visio	or
Dia.	The	diagrams	generated	this	way	look	nice,	but	are	not	really	that	useful,	since	they	do	not	include	the	code
generation	feature.

Hence,	when	deciding	on	a	UML	modelling	tool	(sometimes	also	called	CASE	tool)[9]	you	should	make	sure,	that
it	allows	for	code	generation	and	even	better,	it	should	also	allow	for	reverse	engineering.	Combined,	these	two	are
also	referred	to	as	round-trip	engineering.	Any	serious	tool	should	be	able	to	do	that.	Finally,	UML	models	can	be
exchanged	 among	UML	 tools	 by	 using	 the	XMI	 interchange	 format,	 hence	 you	 should	 check	 that	 your	 tool	 of
choice	supports	this.

Since	the	Rational	Software	Corporation	so	to	say	'invented'	UML,	the	most	well-known	UML	modelling	tool	is
IBM	Rational	Rose.	Other	 tools	 include	Rational	Rhapsody,	MagicDraw	UML,	StarUML,	ArgoUML,	Umbrello,
BOUML,	PowerDesigner,	Visio	 and	Dia.	 Some	of	 popular	 development	 environments	 also	 offer	UML	modelling
tools,	i.	e.	Eclipse,	NetBeans,	and	Visual	Studio.	[10]

1.	 http://www.omg.org/	Object	Management	Group
2.	 http://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language&oldid=413683022	Unified	Modeling
Language

Behaviour	Diagrams

Interaction	Diagrams

UML	Modelling	Tools

References

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-25
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-26
http://www.omg.org/
http://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language&oldid=413683022

www.manaraa.com

3.	 Objectory	AB,	known	as	Objectory	System,	was	founded	in	1987	by	Ivar	Jacobson.	In	1991,	It	was	acquired
and	became	a	subsidiary	of	Ericsson.

4.	 Wikipedia:FOLDOC	(2001).	Unified	Modeling	Language	(http://foldoc.org/index.cgi?query=UML&action=Se
arch)	last	updated	2002-01-03.	Accessed	6	feb	2009.

5.	 Grady	Booch,	Ivar	Jacobson	&	Jim	Rumbaugh	(2000)	OMG	Unified	Modeling	Language	Specification	(http://
www.omg.org/docs/formal/00-03-01.pdf),	Version	1.3	First	Edition:	March	2000.	Retrieved	12	August	2008.

6.	 Satish	Mishra	(1997).	"Visual	Modeling	&	Unified	Modeling	Language	(UML)	:	Introduction	to	UML"	(http://
www2.informatik.hu-berlin.de/~hs/Lehre/2004-WS_SWQS/20050107_Ex_UML.ppt).	Rational	Software
Corporation.	Accessed	9	Nov	2008.

7.	 Jon	Holt	Institution	of	Electrical	Engineers	(2004).	UML	for	Systems	Engineering:	Watching	the	Wheels	IET,
2004,	ISBN	0863413544.	p.58

8.	 UML	Superstructure	Specification	Version	2.2.	OMG,	February	2009.
9.	 http://en.wikipedia.org/wiki/Computer-aided_software_engineering	Computer-aided	software	engineering
10.	 http://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools	List	of	Unified	Modeling	Language

Tools

We	need	to	learn	about	a	UML	modelling	tool.	StarUML[1]	is	a	free	UML	modelling	tool	that	is	quite	powerful,	it
allows	for	forward	and	reverse	engineering.	It	supports	Java,	C++	and	C#.	A	small	disadvantage	is	that	it	is	no
longer	supported,	hence	it	is	limited	to	Java	1.4	and	C#	2.0,	which	is	very	unfortunate.

Start	StarUML,	and	select	’Empty	Project’	at	the	startup.	Then	in	the	Model	Explorer	add	a	new	model	by	right-
clicking	 on	 the	 ’untitled’	 thing.	After	 that	 you	 can	 create	 all	 kinds	 of	UML	diagrams	 by	 right-clicking	 on	 the
model.

More	details	can	be	found	at	the	following	StarUML	Tutorial.	[2]

Another	UML	modelling	tool,	which	is	 free	 for	personal	use	 is	objectiF.[3]	To	 learn	how	to	use	objectiF,	take	a
look	at	their	tutorial.[4]

Take	 the	 restaurant	 example	 from	 class	 and	 create	 all	 the	 different	 UML	 diagrams	 we	 created	 in	 class	 using
StarUML	or	your	favorite	UML	modelling	tool.

Once	you	are	done	with	the	class	diagram,	try	out	the	'Generate	Code'	feature.	In	StarUML	you	right-click	with
your	mouse	 in	 the	 class	diagram,	and	 select	 'Generate	Code'.	Look	at	 the	 classes	generated	and	compare	 them
with	your	model.

Important	 Note:	 the	 restaurant	 example	 actually	 is	 not	 a	 very	 good	 example,	 because	 it	 may	 give	 you	 the
impression	that	actors	become	objects.	They	don't.	Actors	never	turn	into	objects,	actors	are	always	outside	the
system,	hence	the	Tetris	example	below	is	much	better.

Most	of	us	know	the	game	of	Tetris.[5]	[6]	(However,	I	had	students	who	did	not	know	it,	so	 in	case	you	don't
please	 learn	 about	 it	 and	 play	 it	 for	 a	 little	 before	 continuing	 with	 this	 lab).	 If	 you	 recall	 from	 class,	 when
inventing	UML,	the	Three	Amigos	started	with	something	that	was	called	Object	Oriented	Analysis	and	Object
Oriented	Design.	So	let's	do	it.

We	want	to	program	the	game	Tetris.	But	before	we	can	start	we	need	to	analyze	 the	game.	We	 first	need	to
identify	 'objects'	 and	 second	we	must	 find	 out	 how	 they	 relate	 and	 talk	 to	 each	 other.	 So	 for	 this	 lab	 do	 the
following:

build	teams	of	5	to	6	students	per	team
looking	at	the	game,	try	to	identify	objects,	for	instance	the	bricks	that	are	dropping	are	objects
have	each	student	represent	an	object,	e.g.,	a	brick
what	properties	does	that	student/brick	have?	(color,shape,...)

Labs

Lab	1a:	StarUML	(30	min)

Lab	1b:	objectiF	(30	min)

Lab	2:	Restaurant	Example	(30	min)

Lab	3:	Tetris	(60	min)

Object	Oriented	Analysis	and	Design

https://en.wikipedia.org/wiki/FOLDOC
http://foldoc.org/index.cgi?query=UML&action=Search
http://www.omg.org/docs/formal/00-03-01.pdf
http://www2.informatik.hu-berlin.de/~hs/Lehre/2004-WS_SWQS/20050107_Ex_UML.ppt
https://en.wikibooks.org/wiki/Special:BookSources/0863413544
http://en.wikipedia.org/wiki/Computer-aided_software_engineering
http://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-27
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-28
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-29
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-30
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-31
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-32

www.manaraa.com

how	many	bricks	can	there	be,	how	do	they	interact?
is	the	player	who	plays	the	game	also	an	object	or	is	she	an	actor?
how	does	the	player	interact	with	the	bricks?
what	restrictions	exist	on	the	movement	of	the	bricks,	how	would	you	implement	them?
how	would	you	calculate	a	score	for	the	game?

Once	 you	 have	 identified	 all	 the	 objects,	 start	 playing	 the	 real	 game.	 For	 this	 one	 student	 is	 the	 'actor',	 one
student	will	write	the	minutes	(protocol),	and	the	other	students	will	be	objects	(such	as	bricks).	Now	start	the
game:	the	actor	and	the	different	objects	interact	by	talking	to	each	other.	The	student	who	writes	the	minutes,
will	write	down	who	said	what	to	whom,	i.e.,	everything	that	was	said	between	the	objects	and	the	actor	and	the
objects	amongst	themselves.

Play	the	game	for	at	 least	one	or	two	turns.	Does	your	simulation	work,	did	you	forget	something?	Maybe	you
need	to	add	another	object,	like	a	timer.

We	now	need	to	make	the	connection	between	the	play	and	UML.

Use	Case	diagram:	this	is	pretty	straightforward,	you	identify	the	actor	as	the	player,	and	write	down	all	the
use	cases	that	the	player	can	do.	One	question	you	should	check,	if	the	timer	is	an	actor.	The	Use	Case
diagram	tells	you	how	your	system	interacts	with	its	environment.	Draw	the	Use	Case	diagram	for	Tetris.
Activity	diagram:	from	your	game	you	find	that	there	is	some	repetition,	and	some	decisions	have	to	be	made
at	different	stages	in	the	game.	This	can	be	nicely	represented	with	an	Activity	diagram.	Draw	a	high	level
Activity	diagram	for	the	game.

Next	we	come	to	our	minutes	(protocol):	this	contains	all	the	information	we	need	to	draw	a	Sequence	diagram
and	finally	arrive	at	the	Collaboration	diagram.

Sequence	diagram:	take	a	look	at	your	minutes	(protocol).	First,	identify	the	objects	and	put	them
horizontally.	Then	go	through	your	minutes	line	for	line.	For	every	line	in	your	minutes,	draw	the
corresponding	line	in	your	Sequence	diagram.	As	you	can	see	the	Sequence	diagram	is	in	one-to-one
correspondence	with	the	minutes.
Collaboration	diagram:	from	the	Sequence	diagram	it	is	easy	to	create	the	Collaboration	diagram.	Just	do	it.
Class	diagram	(Association):	from	the	Collaboration	diagram,	you	can	infer	the	classes	and	the	methods	the
classes	need.	As	for	the	attributes,	some	you	have	already	identified	(like	the	color	and	shape	of	the	bricks),
others	you	may	have	to	think	about	for	a	little.	Draw	the	class	diagram,	and	for	every	class	try	to	guess	what
attributes	are	needed	for	the	class	to	work	properly.
Class	diagram	(Inheritance):	if	you	have	some	more	experience	with	object-oriented	languages,	you	may	try	to
identify	super	classes,	i.e.,	try	to	use	inheritance	to	take	into	account	common	features	of	objects.

If	you	performed	this	lab	properly,	you	will	have	learned	a	lot.	First,	you	have	seen	that	through	a	simulation	it	is
possible	to	identify	objects,	connections	between	the	objects,	hidden	requirements	and	defects	in	your	assumptions.
Second,	 using	 a	 carefully	 written	 protocol	 of	 your	 simulation	 is	 enough	 to	 create	 Sequence,	 Collaboration	 and
Class	diagrams.	 So	 there	 is	 no	magic	 in	 creating	 these	diagrams,	 it	 is	 just	 playing	 a	 game.	Although	you	may
think	this	is	just	a	funny	or	silly	game,	my	advice	to	you:	play	this	game	for	every	new	project	you	start.

1.	 http://staruml.sourceforge.net/en/	StarUML	-	The	Open	Source	UML/MDA	Platform
2.	 http://cnx.org/content/m15092/latest/	StarUML	Tutorial
3.	 http://www.microtool.de/objectif/en/index.asp	objectiF	-	Tool	for	Model-Driven	Software	Development	with
UML

4.	 http://www.microtool.de/mT/pdf/objectiF/01/Tutorials/JavaTutorial.pdf	Developing	Java	Applications	with
UML

5.	 http://en.wikipedia.org/wiki/Tetris	Tetris
6.	 http://www.percederberg.net/games/tetris/index.html	Java	Tetris

1.	 Give	the	names	of	two	of	the	inventors	of	UML?

Game	Time

UML

References

Questions

http://staruml.sourceforge.net/en/
http://cnx.org/content/m15092/latest/
http://www.microtool.de/objectif/en/index.asp
http://www.microtool.de/mT/pdf/objectiF/01/Tutorials/JavaTutorial.pdf
http://en.wikipedia.org/wiki/Tetris
http://www.percederberg.net/games/tetris/index.html

www.manaraa.com

2.	 Who	mananges	the	UML	standard	these	days?
3.	 Draw	a	UseCase	diagram	for	the	game	of	Breakout.
4.	 Take	a	look	at	the	following	Activity	diagram.	Describe	the	flow	of	information	in	your	own	words.

Questions_Activity_Diagram
5.	 In	class	we	introduced	the	example	of	a	restaurant,	where	Ralph	was	the	customer	who	wanted	to	eat	dinner.
His	waiter	was	Linus,	the	cook	was	Larry	and	Steve	was	the	cashier.	Ralph	was	ordering	a	hamburger	and
beer.	Please	draw	an	Sequence	diagram,	that	displays	the	step	from	the	ordering	of	the	food	until	Ralph	gets
his	beer	and	burger.

6.	 Consider	the	following	class	diagram.	Please	write	Java	classes	that	would	implement	this	class	diagram.
Questions_Class_Diagram

7.	 You	are	supposed	to	write	code	for	a	money	machine.	Draw	a	UseCase	diagram.
8.	 Turn	the	following	Sequence	diagram	into	a	class	diagram.

Questions_Sequence_Diagram
9.	 What	is	the	difference	between	Structure	diagrams	and	Behavior	diagrams?

Process	&	Methodology

First	we	need	to	take	a	brief	look	at	the	big	picture.	The	software	development	process	is	a	structure	imposed	on
the	 development	 of	 a	 software	 product.	 It	 is	 made	 up	 of	 a	 set	 of	 activities	 and	 steps	 with	 the	 goal	 to	 find
repeatable,	predictable	processes	that	improve	productivity	and	quality.

The	software	development	process	consists	of	a	set	of	activities	and	steps,	which	are

Requirements
Specification
Architecture
Design
Implementation
Testing
Deployment
Maintenance

The	 important	 task	 in	 creating	a	 software	product	 is	 extracting	 the	 requirements	 or
requirements	analysis.	Customers	typically	have	an	abstract	idea	of	what	they	want	as
an	 end	 result,	 but	 not	 what	 software	 should	 do.	 Incomplete,	 ambiguous,	 or	 even
contradictory	 requirements	 are	 recognized	 by	 skilled	 and	 experienced	 software
engineers	at	this	point.	Frequently	demonstrating	 live	code	may	help	reduce	the	risk
that	the	requirements	are	incorrect.

Once	the	general	requirements	are	gathered	from	the	client,	an	analysis	of	the	scope	of
the	development	should	be	determined	and	clearly	stated.	This	is	often	called	a	scope
document.

Certain	functionality	may	be	out	of	scope	of	the	project	as	a	function	of	cost	or	as	a
result	of	unclear	requirements	at	the	start	of	development.	If	the	development	is	done
externally,	this	document	can	be	considered	a	legal	document	so	that	if	there	are	ever
disputes,	any	ambiguity	of	what	was	promised	to	the	client	can	be	clarified.

Implementation	is	the	part	of	the	process	where	software	engineers	actually	program	the	code	for	the	project.

Software	testing	is	an	integral	and	important	part	of	the	software	development	process.	This	part	of	the	process
ensures	that	defects	are	recognized	as	early	as	possible.

Documenting	 the	 internal	 design	 of	 software	 for	 the	 purpose	 of	 future	 maintenance	 and	 enhancement	 is	 done
throughout	 development.	 This	 may	 also	 include	 the	 writing	 of	 an	 API,	 be	 it	 external	 or	 internal.	 It	 is	 very
important	to	document	everything	in	the	project.

Deployment	starts	after	the	code	is	appropriately	tested,	is	approved	for	release	and	sold	or	otherwise	distributed

Introduction

Software	Development	Activities

Model	of	the
Systems
Development	Life
Cycle

Model	of	the	Systems
Development	Life
Cycle

Planning

Implementation,	Testing	and	Documenting

Deployment	and	Maintenance

https://commons.wikimedia.org/wiki/Special:UploadWizard?uselang=en&wpDestFile=Questions_Activity_Diagram.png
https://commons.wikimedia.org/wiki/Special:UploadWizard?uselang=en&wpDestFile=Questions_Class_Diagram.png
https://commons.wikimedia.org/wiki/Special:UploadWizard?uselang=en&wpDestFile=Questions_Sequence_Diagram.png
https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg
https://commons.wikimedia.org/wiki/File:CPT-SystemLifeSycle.svg

www.manaraa.com

Deployment	starts	after	the	code	is	appropriately	tested,	is	approved	for	release	and	sold	or	otherwise	distributed
into	a	production	environment.

Software	Training	and	Support	is	important	and	a	lot	of	developers	fail	to	realize	that.	It	would	not	matter	how
much	 time	and	planning	a	development	 team	puts	 into	 creating	 software	 if	nobody	 in	an	organization	ends	up
using	 it.	People	 are	 often	 resistant	 to	 change	 and	 avoid	 venturing	 into	 an	unfamiliar	 area,	 so	 as	 a	part	 of	 the
deployment	phase,	it	is	very	important	to	have	training	classes	for	new	clients	of	your	software.

Maintaining	and	 enhancing	 software	 to	 cope	with	newly	discovered	problems	or	new	 requirements	 can	 take	 far
more	 time	 than	 the	 initial	development	of	 the	 software.	 It	may	be	necessary	 to	add	code	 that	does	not	 fit	 the
original	design	to	correct	an	unforeseen	problem	or	it	may	be	that	a	customer	is	requesting	more	functionality	and
code	can	be	added	to	accommodate	their	requests.	If	the	labor	cost	of	the	maintenance	phase	exceeds	25%	of	the
prior-phases'	labor	cost,	then	it	is	likely	that	the	overall	quality	of	at	least	one	prior	phase	is	poor.	In	that	case,
management	should	consider	the	option	of	rebuilding	the	system	(or	portions)	before	maintenance	cost	 is	out	of
control.

Heading	text

=====

Don't	Write	Another	Process	(http://www.methodsandtools.com/archive/archive.php?id=16)
No	Silver	Bullet:	Essence	and	Accidents	of	Software	Engineering	(http://virtualschool.edu/mon/SoftwareEngin
eering/BrooksNoSilverBullet.html)",	1986
Gerhard	Fischer,	"The	Software	Technology	of	the	21st	Century:	From	Software	Reuse	to	Collaborative
Software	Design"	(http://l3d.cs.colorado.edu/~gerhard/papers/isfst2001.pdf),	2001
Lydia	Ash:	The	Web	Testing	Companion:	The	Insider's	Guide	to	Efficient	and	Effective	Tests,	Wiley,	May	2,
2003.	ISBN	0-471-43021-8
SaaSSDLC.com	(http://SaaSSDLC.com/)	—	Software	as	a	Service	Systems	Development	Life	Cycle	Project
Software	development	life	cycle	(SDLC)	[visual	image],	software	development	life	cycle	(http://www.notetech.c
om/images/software_lifecycle.jpg)
Selecting	an	SDLC	(http://www.gem-up.com/PDF/SK903V0-WP-ChoosingSDLC.pdf)",	2009
Heraprocess.org	(http://www.heraprocess.org/)	—	Hera	is	a	light	process	solution	for	managing	web	projects

book	let

Header	text Header	text Header	text

Example Example Example

Example Example Example

Example Example Example

A	 software	 development	 methodology	 or	 system	 development	 methodology	 in	 software
engineering	is	a	framework	that	 is	used	to	structure,	plan,	and	control	the	process	of	developing	an	information
system.

The	software	development	methodology	framework	didn't	emerge	until	the	1960s.	According	to	Elliott	(2004)	the
systems	development	life	cycle	(SDLC)	can	be	considered	to	be	the	oldest	formalized	methodology	framework	for
building	 information	 systems.	The	main	 idea	of	 the	SDLC	has	been	 "to	pursue	 the	development	of	 information
systems	in	a	very	deliberate,	structured	and	methodical	way,	requiring	each	stage	of	the	life	cycle	from	inception

References

=

External	links

Methodology

History

http://www.methodsandtools.com/archive/archive.php?id=16
http://virtualschool.edu/mon/SoftwareEngineering/BrooksNoSilverBullet.html
http://l3d.cs.colorado.edu/~gerhard/papers/isfst2001.pdf
https://en.wikibooks.org/wiki/Special:BookSources/0-471-43021-8
http://saassdlc.com/
http://www.notetech.com/images/software_lifecycle.jpg
http://www.gem-up.com/PDF/SK903V0-WP-ChoosingSDLC.pdf
http://www.heraprocess.org/

www.manaraa.com

of	the	idea	to	delivery	of	the	final	system,	to	be	carried	out	in	rigidly	and	sequentially".[1]	within	the	context	of
the	framework	being	applied.	The	main	target	of	this	methodology	framework	in	the	1960s	was	"to	develop	large
scale	 functional	business	 systems	 in	an	age	of	 large	 scale	business	 conglomerates.	 Information	 systems	activities
revolved	around	heavy	data	processing	and	number	crunching	routines".[1]

As	a	noun,	a	software	development	methodology	is	a	framework	that	is	used	to	structure,	plan,	and	control	the
process	of	developing	an	information	system	-	this	includes	the	pre-definition	of	specific	deliverables	and	artifacts
that	are	created	and	completed	by	a	project	team	to	develop	or	maintain	an	application.[2]

A	wide	variety	of	such	frameworks	have	evolved	over	the	years,	each
with	 its	 own	 recognized	 strengths	 and	 weaknesses.	 One	 software
development	 methodology	 framework	 is	 not	 necessarily	 suitable	 for
use	by	all	projects.	Each	of	the	available	methodology	frameworks	are
best	 suited	 to	 specific	 kinds	 of	projects,	 based	on	various	 technical,
organizational,	project	and	team	considerations.[2]

These	 software	 development	 frameworks	 are	 often	 bound	 to	 some
kind	 of	 organization,	which	 further	 develops,	 supports	 the	 use,	 and
promotes	 the	methodology	 framework.	The	methodology	 framework
is	 often	 defined	 in	 some	 kind	 of	 formal	 documentation.	 Specific
software	development	methodology	frameworks	(noun)	include

Rational	Unified	Process	(RUP,	IBM)	since	1998.
Agile	Unified	Process	(AUP)	since	2005	by	Scott	Ambler

As	 a	 verb,	 the	 software	 development	 methodology	 is	 an	 approach
used	 by	 organizations	 and	 project	 teams	 to	 apply	 the	 software
development	 methodology	 framework	 (noun).	 Specific	 software
development	methodologies	(verb)	include:

1970s

Structured	programming	since	1969
Cap	Gemini	SDM,	originally	from	PANDATA,	the	first	English	translation	was	published	in	1974.	SDM
stands	for	System	Development	Methodology

1980s

Structured	Systems	Analysis	and	Design	Methodology	(SSADM)	from	1980	onwards
Information	Requirement	Analysis/Soft	systems	methodology

1990s

Object-oriented	programming	(OOP)	has	been	developed	since	the	early	1960s,	and	developed	as	a	dominant
programming	approach	during	the	mid-1990s
Rapid	application	development	(RAD)	since	1991
Scrum,	since	the	late	1990s
Team	software	process	developed	by	Watts	Humphrey	at	the	SEI
Extreme	Programming	since	1999

Every	software	development	methodology	 framework	acts	as	a	basis	 for	applying	specific	approaches	 to	develop
and	maintain	software.	Several	software	development	approaches	have	been	used	since	the	origin	of	 information
technology.	These	are:[2]

Waterfall:	a	linear	framework
Prototyping:	an	iterative	framework
Incremental:	a	combined	linear-iterative	framework
Spiral:	a	combined	linear-iterative	framework
Rapid	application	development	(RAD):	an	iterative	framework
Extreme	Programming

As	a	noun

The	three	basic	approaches	applied	to
software	development	methodology
frameworks.

As	a	verb

Verb	approaches

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Ell04-33
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Ell04-33
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-CMS08-34
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-CMS08-34
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-CMS08-34
https://commons.wikimedia.org/wiki/File:Three_software_development_patterns_mashed_together.svg

www.manaraa.com

The	Waterfall	 model	 is	 a	 sequential	 development	 approach,	 in	 which	 development	 is	 seen	 as	 flowing	 steadily
downwards	 (like	 a	 waterfall)	 through	 the	 phases	 of	 requirements	 analysis,	 design,	 implementation,	 testing
(validation),	integration,	and	maintenance.	The	first	formal	description	of	the	method	is	often	cited	as	an	article
published	by	Winston	W.	Royce[3]	in	1970	although	Royce	did	not	use	the	term	"waterfall"	in	this	article.

The	basic	principles	are:[2]

Project	is	divided	into	sequential	phases,	with	some	overlap	and	splashback	acceptable	between	phases.
Emphasis	is	on	planning,	time	schedules,	target	dates,	budgets	and	implementation	of	an	entire	system	at	one
time.
Tight	control	is	maintained	over	the	life	of	the	project	via	extensive	written	documentation,	formal	reviews,
and	approval/signoff	by	the	user	and	information	technology	management	occurring	at	the	end	of	most	phases
before	beginning	the	next	phase.

Software	 prototyping,	 is	 the	 development	 approach	 of	 activities	 during	 software	 development,	 the	 creation	 of
prototypes,	i.e.,	incomplete	versions	of	the	software	program	being	developed.

The	basic	principles	are:[2]

Not	a	standalone,	complete	development	methodology,	but	rather	an	approach	to	handling	selected	parts	of	a
larger,	more	traditional	development	methodology	(i.e.	incremental,	spiral,	or	rapid	application	development
(RAD)).
Attempts	to	reduce	inherent	project	risk	by	breaking	a	project	into	smaller	segments	and	providing	more	ease-
of-change	during	the	development	process.
User	is	involved	throughout	the	development	process,	which	increases	the	likelihood	of	user	acceptance	of	the
final	implementation.
Small-scale	mock-ups	of	the	system	are	developed	following	an	iterative	modification	process	until	the
prototype	evolves	to	meet	the	users’	requirements.
While	most	prototypes	are	developed	with	the	expectation	that	they	will	be	discarded,	it	is	possible	in	some
cases	to	evolve	from	prototype	to	working	system.
A	basic	understanding	of	the	fundamental	business	problem	is	necessary	to	avoid	solving	the	wrong	problem.

Various	methods	are	acceptable	for	combining	linear	and	iterative	systems	development	methodologies,	with	the
primary	objective	of	each	being	to	reduce	 inherent	project	risk	by	breaking	a	project	 into	smaller	segments	and
providing	more	ease-of-change	during	the	development	process.

The	basic	principles	are:[2]

A	series	of	mini-Waterfalls	are	performed,	where	all	phases	of	the	Waterfall	are	completed	for	a	small	part	of	a
system,	before	proceeding	to	the	next	increment,	or
Overall	requirements	are	defined	before	proceeding	to	evolutionary,	mini-Waterfall	development	of	individual
increments	of	a	system,	or
The	initial	software	concept,	requirements	analysis,	and	design	of	architecture	and	system	core	are	defined	via
Waterfall,	followed	by	iterative	Prototyping,	which	culminates	in	installing	the	final	prototype,	a	working
system.

The	spiral	model	is	a	software	development	process	combining	elements	of	both	design	and	prototyping-in-stages,
in	an	effort	to	combine	advantages	of	top-down	and	bottom-up	concepts.

The	basic	principles	are:[2]

Focus	is	on	risk	assessment	and	on	minimizing	project	risk	by	breaking	a	project	into	smaller	segments	and
providing	more	ease-of-change	during	the	development	process,	as	well	as	providing	the	opportunity	to
evaluate	risks	and	weigh	consideration	of	project	continuation	throughout	the	life	cycle.
"Each	cycle	involves	a	progression	through	the	same	sequence	of	steps,	for	each	part	of	the	product	and	for

Waterfall	development

Prototyping

Incremental	development

Spiral	development

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-35
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-CMS08-34
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-CMS08-34
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-CMS08-34
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-CMS08-34

www.manaraa.com

each	of	its	levels	of	elaboration,	from	an	overall	concept-of-operation	document	down
to	the	coding	of	each	individual	program."[4]

Each	trip	around	the	spiral	traverses	four	basic	quadrants:	(1)	determine	objectives,
alternatives,	and	constraints	of	the	iteration;	(2)	evaluate	alternatives;	Identify	and
resolve	risks;	(3)	develop	and	verify	deliverables	from	the	iteration;	and	(4)	plan	the
next	iteration.[4][5]

Begin	each	cycle	with	an	identification	of	stakeholders	and	their	win	conditions,	and
end	each	cycle	with	review	and	commitment.[6]

Rapid	 application	 development	 (RAD)	 is	 a	 software	 development	 methodology,	 which	 involves	 iterative
development	 and	 the	 construction	 of	 prototypes.	 Rapid	 application	 development	 is	 a	 term	 originally	 used	 to
describe	a	software	development	process	introduced	by	James	Martin	in	1991.

The	basic	principles	are:[2]

Key	objective	is	for	fast	development	and	delivery	of	a	high	quality	system	at	a	relatively	low	investment	cost.
Attempts	to	reduce	inherent	project	risk	by	breaking	a	project	into	smaller	segments	and	providing	more	ease-
of-change	during	the	development	process.
Aims	to	produce	high	quality	systems	quickly,	primarily	via	iterative	Prototyping	(at	any	stage	of
development),	active	user	involvement,	and	computerized	development	tools.	These	tools	may	include
Graphical	User	Interface	(GUI)	builders,	Computer	Aided	Software	Engineering	(CASE)	tools,	Database
Management	Systems	(DBMS),	fourth-generation	programming	languages,	code	generators,	and	object-
oriented	techniques.
Key	emphasis	is	on	fulfilling	the	business	need,	while	technological	or	engineering	excellence	is	of	lesser
importance.
Project	control	involves	prioritizing	development	and	defining	delivery	deadlines	or	“timeboxes”.	If	the	project
starts	to	slip,	emphasis	is	on	reducing	requirements	to	fit	the	timebox,	not	in	increasing	the	deadline.
Generally	includes	joint	application	design	(JAD),	where	users	are	intensely	involved	in	system	design,	via
consensus	building	in	either	structured	workshops,	or	electronically	facilitated	interaction.
Active	user	involvement	is	imperative.
Iteratively	produces	production	software,	as	opposed	to	a	throwaway	prototype.
Produces	documentation	necessary	to	facilitate	future	development	and	maintenance.
Standard	systems	analysis	and	design	methods	can	be	fitted	into	this	framework.

Other	methodology	practices	include:

Object-oriented	development	methodologies,	such	as	Grady	Booch's	object-oriented	design	(OOD),	also	known
as	object-oriented	analysis	and	design	(OOAD).	The	Booch	model	includes	six	diagrams:	class,	object,	state
transition,	interaction,	module,	and	process.[7]

Top-down	programming:	evolved	in	the	1970s	by	IBM	researcher	Harlan	Mills	(and	Niklaus	Wirth)	in
developed	structured	programming.
Unified	Process	(UP)	is	an	iterative	software	development	methodology	framework,	based	on	Unified	Modeling
Language	(UML).	UP	organizes	the	development	of	software	into	four	phases,	each	consisting	of	one	or	more
executable	iterations	of	the	software	at	that	stage	of	development:	inception,	elaboration,	construction,	and
guidelines.	Many	tools	and	products	exist	to	facilitate	UP	implementation.	One	of	the	more	popular	versions	of
UP	is	the	Rational	Unified	Process	(RUP).
Agile	software	development	refers	to	a	group	of	software	development	methodologies	based	on	iterative
development,	where	requirements	and	solutions	evolve	via	collaboration	between	self-organizing	cross-
functional	teams.	The	term	was	coined	in	the	year	2001	when	the	Agile	Manifesto	was	formulated.
Integrated	software	development	refers	to	a	deliverable	based	software	development	framework	using	the	three
primary	IT	(project	management,	software	development,	software	testing)	life	cycles	that	can	be	leveraged
using	multiple	(iterative,	waterfall,	spiral,	agile)	software	development	approaches,	where	requirements	and

The	spiral	model.

Rapid	application	development

Other	practices

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-BB86-36
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-BB86-36
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-37
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-38
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-CMS08-34
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-39
https://commons.wikimedia.org/wiki/File:Software_Development_Spiral.svg

www.manaraa.com

solutions	evolve	via	collaboration	between	self-organizing	cross-functional	teams.

A	view	model	 is	 framework	which	provides	 the	viewpoints	on	 the	 system
and	its	environment,	to	be	used	in	the	software	development	process.	It	is	a
graphical	representation	of	the	underlying	semantics	of	a	view.

The	 purpose	 of	 viewpoints	 and	 views	 is	 to	 enable	 human	 engineers	 to
comprehend	 very	 complex	 systems,	 and	 to	 organize	 the	 elements	 of	 the
problem	and	the	solution	around	domains	of	expertise.	 In	the	engineering
of	physically	intensive	systems,	viewpoints	often	correspond	to	capabilities
and	responsibilities	within	the	engineering	organization.[8]

Most	complex	system	specifications	are	so	extensive	that	no	one	individual
can	fully	comprehend	all	aspects	of	the	specifications.	Furthermore,	we	all
have	 different	 interests	 in	 a	 given	 system	 and	 different	 reasons	 for
examining	 the	 system's	 specifications.	 A	 business	 executive	 will	 ask
different	questions	of	a	system	make-up	than	would	a	system	implementer.
The	 concept	 of	 viewpoints	 framework,	 therefore,	 is	 to	 provide	 separate
viewpoints	 into	 the	 specification	 of	 a	 given	 complex	 system.	 These
viewpoints	 each	 satisfy	 an	 audience	 with	 interest	 in	 some	 set	 of	 aspects	 of	 the	 system.	 Associated	 with	 each
viewpoint	 is	 a	 viewpoint	 language	 that	 optimizes	 the	 vocabulary	 and	 presentation	 for	 the	 audience	 of	 that
viewpoint.

Graphical	 representation	 of	 the	 current	 state	 of	 information	 provides	 a	 very	 effective	 means	 for	 presenting
information	to	both	users	and	system	developers.

A	business	model	illustrates	the	functions	associated	with	the	business
process	being	modeled	and	the	organizations	that	perform	these
functions.	By	depicting	activities	and	information	flows,	a	foundation	is
created	to	visualize,	define,	understand,	and	validate	the	nature	of	a
process.
A	data	model	provides	the	details	of	information	to	be	stored,	and	is	of
primary	use	when	the	final	product	is	the	generation	of	computer
software	code	for	an	application	or	the	preparation	of	a	functional
specification	to	aid	a	computer	software	make-or-buy	decision.	See	the
figure	on	the	right	for	an	example	of	the	interaction	between	business
process	and	data	models.[9]

Usually,	 a	model	 is	 created	 after	 conducting	 an	 interview,	 referred	 to	 as
business	analysis.	The	 interview	consists	of	a	 facilitator	asking	a	 series	of
questions	designed	to	extract	required	information	that	describes	a	process.
The	 interviewer	 is	called	a	 facilitator	to	emphasize	that	 it	 is	the	participants	who	provide	the	 information.	The
facilitator	 should	 have	 some	 knowledge	 of	 the	 process	 of	 interest,	 but	 this	 is	 not	 as	 important	 as	 having	 a
structured	methodology	by	which	 the	questions	are	 asked	of	 the	process	 expert.	The	methodology	 is	 important
because	usually	a	team	of	facilitators	is	collecting	information	across	the	facility	and	the	results	of	the	information
from	all	the	interviewers	must	fit	together	once	completed.[9]

The	models	are	developed	as	defining	either	 the	current	 state	of	 the	process,	 in	which	case	 the	 final	product	 is
called	the	"as-is"	snapshot	model,	or	a	collection	of	ideas	of	what	the	process	should	contain,	resulting	in	a	"what-
can-be"	model.	 Generation	 of	 process	 and	 data	models	 can	 be	 used	 to	 determine	 if	 the	 existing	 processes	 and
information	systems	are	sound	and	only	need	minor	modifications	or	enhancements,	or	if	re-engineering	is	required
as	a	corrective	action.	The	creation	of	business	models	is	more	than	a	way	to	view	or	automate	your	information
process.	 Analysis	 can	 be	 used	 to	 fundamentally	 reshape	 the	 way	 your	 business	 or	 organization	 conducts	 its
operations.[9]

Computer-aided	software	engineering	(CASE),	in	the	field	software	engineering	is	the	scientific	application	of	a	set
of	 tools	 and	 methods	 to	 a	 software	 which	 results	 in	 high-quality,	 defect-free,	 and	 maintainable	 software
products.[10]	It	also	refers	to	methods	for	the	development	of	information	systems	together	with	automated	tools
that	 can	 be	 used	 in	 the	 software	 development	 process.[11]	 The	 term	 "computer-aided	 software	 engineering"
(CASE)	can	refer	to	the	software	used	for	the	automated	development	of	systems	software,	 i.e.,	computer	code.
The	 CASE	 functions	 include	 analysis,	 design,	 and	 programming.	 CASE	 tools	 automate	methods	 for	 designing,
documenting,	and	producing	structured	computer	code	in	the	desired	programming	language.[12]

Two	key	ideas	of	Computer-aided	Software	System	Engineering	(CASE)	are:[13]

Foster	computer	assistance	in	software	development	and	or	software	maintenance	processes,	and

Subtopics

View	model

The	TEAF	Matrix	of	Views	and
Perspectives.

Business	process	and	data	modelling

example	of	the	interaction
between	business	process	and	data
models.[9]

Computer-aided	software	engineering

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-NIST2003-40
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-SS93-41
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-SS93-41
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-SS93-41
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-42
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-43
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-44
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-45
https://commons.wikimedia.org/wiki/File:TEAF_Matrix_of_Views_and_Perspectives.jpg
https://commons.wikimedia.org/wiki/File:Process_and_data_modeling.jpg
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-SS93-41

www.manaraa.com

An	engineering	approach	to	software	development	and	or	maintenance.
Typical	CASE	tools	exist	for	configuration	management,	data	modeling,	model	transformation,	refactoring,	source
code	generation,	and	Unified	Modeling	Language.

An	 integrated	 development	 environment	 (IDE)	 also	 known	 as	 integrated
design	 environment	 or	 integrated	 debugging	 environment	 is	 a	 software
application	 that	 provides	 comprehensive	 facilities	 to	 computer
programmers	for	software	development.	An	IDE	normally	consists	of	a:

source	code	editor,
compiler	and/or	interpreter,
build	automation	tools,	and
debugger	(usually).

IDEs	 are	 designed	 to	 maximize	 programmer	 productivity	 by	 providing
tight-knit	 components	 with	 similar	 user	 interfaces.	 Typically	 an	 IDE	 is
dedicated	 to	 a	 specific	 programming	 language,	 so	 as	 to	 provide	 a	 feature
set	 which	 most	 closely	 matches	 the	 programming	 paradigms	 of	 the
language.

A	modeling	language	is	any	artificial	language	that	can	be	used	to	express	information	or	knowledge	or	systems	in
a	 structure	 that	 is	defined	by	a	 consistent	 set	of	 rules.	The	 rules	are	used	 for	 interpretation	of	 the	meaning	of
components	in	the	structure.	A	modeling	language	can	be	graphical	or	textual.[14]	Graphical	modeling	languages
use	a	diagram	 techniques	with	named	 symbols	 that	 represent	 concepts	 and	 lines	 that	 connect	 the	 symbols	 and
that	 represent	 relationships	 and	 various	 other	 graphical	 annotation	 to	 represent	 constraints.	 Textual	 modeling
languages	 typically	 use	 standardised	 keywords	 accompanied	 by	 parameters	 to	 make	 computer-interpretable
expressions.

Example	of	graphical	modelling	languages	in	the	field	of	software	engineering	are:

Business	Process	Modeling	Notation	(BPMN,	and	the	XML	form	BPML)	is	an	example	of	a	process	modeling
language.
EXPRESS	and	EXPRESS-G	(ISO	10303-11)	is	an	international	standard	general-purpose	data	modeling
language.
Extended	Enterprise	Modeling	Language	(EEML)	is	commonly	used	for	business	process	modeling	across
layers.
Flowchart	is	a	schematic	representation	of	an	algorithm	or	a	stepwise	process,
Fundamental	Modeling	Concepts	(FMC)	modeling	language	for	software-intensive	systems.
IDEF	is	a	family	of	modeling	languages,	the	most	notable	of	which	include	IDEF0	for	functional	modeling,
IDEF1X	for	information	modeling,	and	IDEF5	for	modeling	ontologies.
LePUS3	is	an	object-oriented	visual	Design	Description	Language	and	a	formal	specification	language	that	is
suitable	primarily	for	modelling	large	object-oriented	(Java,	C++,	C#)	programs	and	design	patterns.
Specification	and	Description	Language(SDL)	is	a	specification	language	targeted	at	the	unambiguous
specification	and	description	of	the	behaviour	of	reactive	and	distributed	systems.
Unified	Modeling	Language	(UML)	is	a	general-purpose	modeling	language	that	is	an	industry	standard	for
specifying	software-intensive	systems.	UML	2.0,	the	current	version,	supports	thirteen	different	diagram
techniques,	and	has	widespread	tool	support.

Not	 all	 modeling	 languages	 are	 executable,	 and	 for	 those	 that	 are,	 using	 them	 doesn't	 necessarily	 mean	 that
programmers	are	no	longer	needed.	On	the	contrary,	executable	modeling	languages	are	intended	to	amplify	the
productivity	of	skilled	programmers,	so	that	they	can	address	more	difficult	problems,	such	as	parallel	computing
and	distributed	systems.

A	programming	paradigm	is	a	fundamental	style	of	computer	programming,	in	contrast	to	a	software	engineering
methodology,	which	is	a	style	of	solving	specific	software	engineering	problems.	Paradigms	differ	in	the	concepts
and	abstractions	used	to	represent	the	elements	of	a	program	(such	as	objects,	functions,	variables,	constraints...)
and	the	steps	that	compose	a	computation	(assignation,	evaluation,	continuations,	data	flows...).

A	 programming	 language	 can	 support	 multiple	 paradigms.	 For	 example	 programs	 written	 in	 C++	 or	 Object
Pascal	 can	 be	 purely	 procedural,	 or	 purely	 object-oriented,	 or	 contain	 elements	 of	 both	 paradigms.	 Software
designers	 and	 programmers	 decide	 how	 to	 use	 those	 paradigm	 elements.	 In	 object-oriented	 programming,
programmers	 can	 think	 of	 a	 program	 as	 a	 collection	 of	 interacting	 objects,	 while	 in	 functional	 programming	 a
program	 can	 be	 thought	 of	 as	 a	 sequence	 of	 stateless	 function	 evaluations.	When	 programming	 computers	 or
systems	with	many	processors,	process-oriented	programming	allows	programmers	to	think	about	applications	as
sets	of	concurrent	processes	acting	upon	logically	shared	data	structures.

Integrated	development	environment

Anjuta,	a	C	and	C++	IDE	for
the	GNOME	environment

Modeling	language

Programming	paradigm

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-46
https://en.wikibooks.org/wiki/C%2B%2B
https://en.wikibooks.org/w/index.php?title=C_Sharp_(programming_language)&action=edit&redlink=1
https://commons.wikimedia.org/wiki/File:Anjuta-2.0.0-2.png

www.manaraa.com

Just	as	different	groups	in	software	engineering	advocate	different	methodologies,	different	programming	languages
advocate	 different	 programming	 paradigms.	 Some	 languages	 are	 designed	 to	 support	 one	 paradigm	 (Smalltalk
supports	 object-oriented	 programming,	 Haskell	 supports	 functional	 programming),	 while	 other	 programming
languages	 support	multiple	paradigms	(such	as	Object	Pascal,	C++,	C#,	Visual	Basic,	Common	Lisp,	Scheme,
Python,	Ruby,	and	Oz).

Many	 programming	 paradigms	 are	 as	 well	 known	 for	 what	methods	 they	 forbid	 as	 for	 what	 they	 enable.	 For
instance,	 pure	 functional	 programming	 forbids	 using	 side-effects;	 structured	 programming	 forbids	 using	 goto
statements.	 Partly	 for	 this	 reason,	 new	 paradigms	 are	 often	 regarded	 as	 doctrinaire	 or	 overly	 rigid	 by	 those
accustomed	to	earlier	styles.[citation	needed]	Avoiding	certain	methods	can	make	it	easier	to	prove	theorems	about
a	program's	correctness,	or	simply	to	understand	its	behavior.

A	software	framework	is	a	re-usable	design	for	a	software	system	or	subsystem.	A	software	framework	may	include
support	 programs,	 code	 libraries,	 a	 scripting	 language,	 or	 other	 software	 to	 help	 develop	 and	 glue	 together	 the
different	components	of	a	software	project.	Various	parts	of	the	framework	may	be	exposed	via	an	API.

A	 software	 development	 process	 is	 a	 framework	 imposed	 on	 the	 development	 of	 a	 software	 product.	 Synonyms
include	 software	 life	 cycle	 and	 software	 process.	 There	 are	 several	 models	 for	 such	 processes,	 each	 describing
approaches	to	a	variety	of	tasks	or	activities	that	take	place	during	the	process.

A	 largely	growing	body	of	 software	development	organizations	 implement	process	methodologies.	Many	of	 them
are	in	the	defense	industry,	which	in	the	U.S.	requires	a	rating	based	on	'process	models'	to	obtain	contracts.	The
international	standard	describing	the	method	to	select,	 implement	and	monitor	the	life	cycle	for	software	is	ISO
12207.

A	 decades-long	 goal	 has	 been	 to	 find	 repeatable,	 predictable	 processes	 that	 improve	 productivity	 and	 quality.
Some	 try	 to	 systematize	 or	 formalize	 the	 seemingly	 unruly	 task	 of	 writing	 software.	 Others	 apply	 project
management	methods	to	writing	software.	Without	project	management,	software	projects	can	easily	be	delivered
late	 or	 over	 budget.	 With	 large	 numbers	 of	 software	 projects	 not	 meeting	 their	 expectations	 in	 terms	 of
functionality,	cost,	or	delivery	schedule,	effective	project	management	appears	to	be	lacking.

Lists

List	of	software	engineering	topics
List	of	software	development	philosophies

Related	topics

Domain-specific	modeling
Lightweight	methodology
Object	modeling	language
Structured	programming
Integrated	IT	Methodology

1.	 Geoffrey	Elliott	(2004)	Global	Business	Information	Technology:	an	integrated	systems	approach.	Pearson
Education.	p.87.

2.	 Centers	for	Medicare	&	Medicaid	Services	(CMS)	Office	of	Information	Service	(2008).	Selecting	a	development
approach	(http://www.cms.gov/Research-Statistics-Data-and-Systems/CMS-Information-Technology/XLC/Do
wnloads/SelectingDevelopmentApproach.pdf).	Webarticle.	United	States	Department	of	Health	and	Human
Services	(HHS).	Revalidated:	March	27,	2008.	Retrieved	15	July	2015.

3.	 Wasserfallmodell	>	Entstehungskontext	(http://cartoon.iguw.tuwien.ac.at/fit/fit01/wasserfall/entstehung.htm
l),	Markus	Rerych,	Institut	für	Gestaltungs-	und	Wirkungsforschung,	TU-Wien.	Accessed	on	line	November
28,	2007.

4.	 Barry	Boehm	(1996.,	"A	Spiral	Model	of	Software	Development	and	Enhancement	(http://doi.acm.org/10.1145
/12944.12948)".	In:	ACM	SIGSOFT	Software	Engineering	Notes	(ACM)	11(4):14-24,	August	1986

5.	 Richard	H.	Thayer,	Barry	W.	Boehm	(1986).	Tutorial:	software	engineering	project	management.	Computer
Society	Press	of	the	IEEE.	p.130

6.	 Barry	W.	Boehm	(2000).	Software	cost	estimation	with	Cocomo	II:	Volume	1.
7.	 Georges	Gauthier	Merx	&	Ronald	J.	Norman	(2006).	Unified	Software	Engineering	with	Java.	p.201.

Software	framework

Software	development	process

See	also

References

https://en.wikibooks.org/wiki/Wikibooks:OR
http://www.cms.gov/Research-Statistics-Data-and-Systems/CMS-Information-Technology/XLC/Downloads/SelectingDevelopmentApproach.pdf
http://cartoon.iguw.tuwien.ac.at/fit/fit01/wasserfall/entstehung.html
http://doi.acm.org/10.1145/12944.12948

www.manaraa.com

8.	 Edward	J.	Barkmeyer	ea	(2003).	Concepts	for	Automating	Systems	Integration	(http://www.mel.nist.gov/msid
library/doc/AMIS-Concepts.pdf)	NIST	2003.

9.	 Paul	R.	Smith	&	Richard	Sarfaty	(1993).	Creating	a	strategic	plan	for	configuration	management	using
Computer	Aided	Software	Engineering	(CASE)	tools.	(http://www.osti.gov/energycitations/servlets/purl/1016
0331-YhIRrY/)	Paper	For	1993	National	DOE/Contractors	and	Facilities	CAD/CAE	User's	Group.

10.	 Kuhn,	D.L	(1989).	"Selecting	and	effectively	using	a	computer	aided	software	engineering	tool".	Annual
Westinghouse	computer	symposium;	6-7	Nov	1989;	Pittsburgh,	PA	(USA);	DOE	Project.

11.	 P.	Loucopoulos	and	V.	Karakostas	(1995).	System	Requirements	Engineering.	McGraw-Hill.
12.	 CASE	(http://www.its.bldrdoc.gov/projects/devglossary/_case.html)	definition	In:	Telecom	Glossary	2000	(ht

tp://www.its.bldrdoc.gov/projects/devglossary/).	Retrieved	26	Oct	2008.
13.	 K.	Robinson	(1992).	Putting	the	Software	Engineering	into	CASE.	New	York	:	John	Wiley	and	Sons	Inc.
14.	 Xiao	He	(2007).	"A	metamodel	for	the	notation	of	graphical	modeling	languages".	In:	Computer	Software	and

Applications	Conference,	2007.	COMPSAC	2007	-	Vol.	1.	31st	Annual	International,	Volume	1,	Issue	,	24–27
July	2007,	pp	219-224.

Selecting	a	development	approach	(http://www.cms.gov/Research-Statistics-Data-and-Systems/CMS-Informati
on-Technology/XLC/Downloads/SelectingDevelopmentApproach.pdf)	at	cms.gov.
Software	Methodologies	Book	Reviews	(http://www.techbookreport.com/SoftwareIndex.html)	An	extensive	set
of	book	reviews	related	to	software	methodologies	and	processes

The	 V-model	 represents	 a	 software	 development	 process	 (also
applicable	 to	 hardware	 development)	 which	 may	 be	 considered	 an
extension	of	the	waterfall	model.	Instead	of	moving	down	in	a	linear
way,	 the	process	 steps	 are	 bent	upwards	 after	 the	 coding	phase,	 to
form	 the	 typical	 V	 shape.	 The	 V-Model	 demonstrates	 the
relationships	between	each	phase	of	the	development	life	cycle	and	its
associated	 phase	 of	 testing.	 The	 horizontal	 and	 vertical	 axes
represents	 time	 or	 project	 completeness	 (left-to-right)	 and	 level	 of
abstraction	(coarsest-grain	abstraction	uppermost),	respectively.

In	the	Requirements	analysis	phase,	the	requirements	of	the	proposed
system	are	collected	by	analyzing	the	needs	of	the	user(s).	This	phase
is	concerned	about	establishing	what	the	ideal	system	has	to	perform.
However	it	does	not	determine	how	the	software	will	be	designed	or	built.	Usually,	the	users	are	interviewed	and	a
document	called	the	user	requirements	document	is	generated.

The	 user	 requirements	 document	 will	 typically	 describe	 the	 system’s	 functional,	 interface,	 performance,	 data,
security,	 etc	 requirements	 as	 expected	 by	 the	 user.	 It	 is	 used	 by	 business	 analysts	 to	 communicate	 their
understanding	of	the	system	to	the	users.	The	users	carefully	review	this	document	as	this	document	would	serve
as	the	guideline	for	the	system	designers	in	the	system	design	phase.	The	user	acceptance	tests	are	designed	in	this
phase.	See	also	Functional	requirements.	this	is	parallel	processing

There	are	different	methods	for	gathering	requirements	of	both	soft	and	hard	methodologies	including;	interviews,
questionnaires,	document	analysis,	observation,	throw-away	prototypes,	use	cases	and	status	and	dynamic	views
with	users.

Systems	design	is	the	phase	where	system	engineers	analyze	and	understand	the	business	of	the	proposed	system
by	 studying	 the	 user	 requirements	 document.	 They	 figure	 out	 possibilities	 and	 techniques	 by	 which	 the	 user
requirements	can	be	implemented.	If	any	of	the	requirements	are	not	feasible,	the	user	is	informed	of	the	issue.	A
resolution	is	found	and	the	user	requirement	document	is	edited	accordingly.

The	 software	 specification	 document	which	 serves	 as	 a	 blueprint	 for	 the	 development	 phase	 is	 generated.	This
document	 contains	 the	 general	 system	 organization,	 menu	 structures,	 data	 structures	 etc.	 It	 may	 also	 hold
example	business	scenarios,	sample	windows,	reports	for	the	better	understanding.	Other	technical	documentation
like	entity	diagrams,	data	dictionary	will	also	be	produced	 in	 this	phase.	The	documents	 for	 system	testing	are
prepared	in	this	phase.	V	model	is	also	similar	with	waterfall	model.

The	phase	of	the	design	of	computer	architecture	and	software	architecture	can	also	be	referred	to	as	high-level
design.	The	baseline	in	selecting	the	architecture	is	that	it	should	realize	all	which	typically	consists	of	the	list	of
modules,	 brief	 functionality	 of	 each	 module,	 their	 interface	 relationships,	 dependencies,	 database	 tables,
architecture	diagrams,	technology	details	etc.	The	integration	testing	design	is	carried	out	in	the	particular	phase.

External	links

V-Model

The	V-model	of	the	Systems
Engineering	Process.[1]

Verification	Phases

Requirements	analysis

System	Design

Architecture	Design

http://www.mel.nist.gov/msidlibrary/doc/AMIS-Concepts.pdf
http://www.osti.gov/energycitations/servlets/purl/10160331-YhIRrY/
http://www.its.bldrdoc.gov/projects/devglossary/_case.html
http://www.its.bldrdoc.gov/projects/devglossary/
http://www.cms.gov/Research-Statistics-Data-and-Systems/CMS-Information-Technology/XLC/Downloads/SelectingDevelopmentApproach.pdf
http://www.techbookreport.com/SoftwareIndex.html
https://commons.wikimedia.org/wiki/File:Systems_Engineering_Process_II.svg
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-FHWA_05-47

www.manaraa.com

The	module	design	phase	can	also	be	referred	to	as	low-level	design.	The	designed	system	is	broken	up	into	smaller
units	or	modules	and	each	of	them	is	explained	so	that	the	programmer	can	start	coding	directly.	The	low	level
design	document	or	program	specifications	will	contain	a	detailed	functional	logic	of	the	module,	in	pseudocode:

database	tables,	with	all	elements,	including	their	type	and	size
all	interface	details	with	complete	API	references
all	dependency	issues
error	message	listings
complete	input	and	outputs	for	a	module.

The	unit	test	design	is	developed	in	this	stage.

In	 computer	 programming,	 unit	 testing	 is	 a	 method	 by	 which	 individual	 units	 of	 source	 code	 are	 tested	 to
determine	if	they	are	fit	for	use.	A	unit	is	the	smallest	testable	part	of	an	application.	In	procedural	programming
a	unit	may	be	an	individual	function	or	procedure.	Unit	tests	are	created	by	programmers	or	occasionally	by	white
box	testers.	The	purpose	is	to	verify	the	internal	logic	code	by	testing	every	possible	branch	within	the	function,
also	known	as	test	coverage.	Static	analysis	tools	are	used	to	facilitate	in	this	process,	where	variations	of	input
data	are	passed	to	the	function	to	test	every	possible	case	of	execution.

In	 integration	 testing	 the	 separate	modules	will	be	 tested	 together	 to	 expose	 faults	 in	 the	 interfaces	and	 in	 the
interaction	between	 integrated	components.	Testing	 is	usually	black	box	as	 the	code	 is	not	directly	checked	 for
errors.

System	 testing	 will	 compare	 the	 system	 specifications	 against	 the	 actual	 system.After	 the	 integration	 test	 is
completed,	 the	 next	 test	 level	 is	 the	 system	 test.	 System	 testing	 checks	 if	 the	 integrated	 product	 meets	 the
specified	requirements.	Why	is	this	still	necessary	after	the	component	and	integration	tests?	The	reasons	for	this
are	as	follows:

1.	 In	the	lower	test	levels,	the	testing	was	done	against	technical	specifications,	i.e.,	from	the	technical
perspective	of	the	software	producer.	The	system	test,	though,	looks	at	the	system	from	the	perspective	of	the
customer	and	the	future	user.	The	testers	validate	whether	the	requirements	are	completely	and	appropriately
met.

Example:	The	customer	(who	has	ordered	and	paid	for	the	system)	and	the	user	(who	uses	the	system)	can
be	different	groups	of	people	or	organizations	with	their	own	specific	interests	and	requirements	of	the
system.

2.	 Many	functions	and	system	characteristics	result	from	the	interaction	of	all	system	components,	consequently,
they	are	only	visible	on	the	level	of	the	entire	system	and	can	only	be	observed	and	tested	there.

Acceptance	testing	is	the	phase	of	testing	used	to	determine	whether	a	system	satisfies	the	requirements	specified
in	the	requirements	analysis	phase.	The	acceptance	test	design	 is	derived	from	the	requirements	document.	The
acceptance	test	phase	is	the	phase	used	by	the	customer	to	determine	whether	to	accept	the	system	or	not.

Acceptance	testing	helps

to	determine	whether	a	system	satisfies	its	acceptance	criteria	or	not.
to	enable	the	customer	to	determine	whether	to	accept	the	system	or	not.
to	test	the	software	in	the	"real	world"	by	the	intended	audience.

Purpose	of	acceptance	testing:

to	verify	the	system	or	changes	according	to	the	original	needs.

1.	 Define	the	acceptance	criteria:

Functionality	requirements.
Performance	requirements.

Module	Design

Validation	Phases

Unit	Testing

Integration	Testing

System	Testing

Reasons	for	system	test

User	Acceptance	Testing

Procedures

www.manaraa.com

Interface	quality	requirements.
Overall	software	quality	requirements.

2.	 Develop	an	acceptance	plan:

Project	description.
User	responsibilities.
Acceptance	description.
Execute	the	acceptance	test	plan.

1.	 Clarus	Concept	of	Operations.	(http://www.itsdocs.fhwa.dot.gov/jpodocs/repts_te/14158.htm)	Publication
No.	FHWA-JPO-05-072,	Federal	Highway	Administration	(FHWA),	2005

Roger	S.	Pressman:Software	Engineering:	A	Practitioner's	Approach,	The	McGraw-Hill	Companies,	ISBN
007301933X
Mark	Hoffman	&	Ted	Beaumont:	Application	Development:	Managing	the	Project	Life	Cycle,	Mc	Press,	ISBN
1883884454
Boris	Beizer:	Software	Testing	Techniques.	Second	Edition,	International	Thomson	Computer	Press,	1990,
ISBN	1-85032-880-3

Agile	 software	 development	 is	 a	 group	 of	 software	 development	 methodologies	 based	 on	 iterative	 and
incremental	development,	where	requirements	and	solutions	evolve	through	collaboration	between	self-organizing,
cross-functional	teams.	The	Agile	Manifesto[1]	introduced	the	term	in	2001.

Incremental	 software	 development	 methods	 have	 been	 traced	 back	 to	 1957.[2]	 In	 1974,	 a
paper	by	E.	A.	Edmonds	introduced	an	adaptive	software	development	process.[3]

So-called	"lightweight"	software	development	methods	evolved	in	the	mid-1990s	as	a	reaction
against	 "heavyweight"	 methods,	 which	 were	 characterized	 by	 their	 critics	 as	 a	 heavily
regulated,	 regimented,	 micromanaged,	 waterfall	 model	 of	 development.	 Proponents	 of
lightweight	 methods	 (and	 now	 "agile"	 methods)	 contend	 that	 they	 are	 a	 return	 to
development	practices	from	early	in	the	history	of	software	development.[2]

Early	implementations	of	lightweight	methods	include	Scrum	(1995),	Crystal	Clear,	Extreme
Programming	 (1996),	 Adaptive	 Software	 Development,	 Feature	 Driven	 Development,	 and
Dynamic	Systems	Development	Method	(DSDM)	(1995).	These	are	now	typically	referred	to
as	agile	methodologies,	after	the	Agile	Manifesto	published	in	2001.[4]

In	February	2001,	17	software	developers[5]	met	at	a	ski	resort	in	Snowbird,	Utah,	to	discuss
lightweight	 development	 methods.	 They	 published	 the	 "Manifesto	 for	 Agile	 Software
Development"[1]	to	define	the	approach	now	known	as	agile	software	development.	Some	of
the	manifesto's	 authors	 formed	 the	 Agile	 Alliance,	 a	 nonprofit	 organization	 that	 promotes
software	development	according	to	the	manifesto's	principles.

Agile	Manifesto	reads,	in	its	entirety,	as	follows:[1]

We	are	uncovering	better	ways	of	developing	software	by	doing	it	and	helping	others	do	it.	Through	this
work	we	have	come	to	value:

Individuals	and	interactions	over	processes	and	tools
Working	software	over	comprehensive	documentation
Customer	collaboration	over	contract	negotiation
Responding	to	change	over	following	a	plan

References

Further	reading

External	links

Agile	Model

History

Predecessors

Jeff	Sutherland,
one	of	the
developers	of
the	Scrum	agile
software
development
process

Agile	Manifesto

http://www.itsdocs.fhwa.dot.gov/jpodocs/repts_te/14158.htm
https://en.wikibooks.org/wiki/Special:BookSources/007301933X
https://en.wikibooks.org/wiki/Special:BookSources/1883884454
https://en.wikibooks.org/wiki/Special:BookSources/1-85032-880-3
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Agile_Manifesto-48
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-craig2003-49
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-edmonds1974-50
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-craig2003-49
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Larman2004-51
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-52
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Agile_Manifesto-48
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Agile_Manifesto-48
https://commons.wikimedia.org/wiki/File:Jeff_Sutherland.JPG

www.manaraa.com

That	is,	while	there	is	value	in	the	items	on	the	right,	we	value	the	items	on	the	left	more.

Twelve	principles	underlie	the	Agile	Manifesto,	including:[6]

Customer	satisfaction	by	rapid	delivery	of	useful	software
Welcome	changing	requirements,	even	late	in	development
Working	software	is	delivered	frequently	(weeks	rather	than	months)
Working	software	is	the	principal	measure	of	progress
Sustainable	development,	able	to	maintain	a	constant	pace
Close,	daily	co-operation	between	business	people	and	developers
Face-to-face	conversation	is	the	best	form	of	communication	(co-location)
Projects	are	built	around	motivated	individuals,	who	should	be	trusted
Continuous	attention	to	technical	excellence	and	good	design
Simplicity
Self-organizing	teams
Regular	adaptation	to	changing	circumstances

In	 2005,	 a	 group	headed	by	Alistair	Cockburn	and	Jim	Highsmith	wrote	 an	 addendum	of	project	management
principles,	 the	 Declaration	 of	 Interdependence,[7]	 to	 guide	 software	 project	 management	 according	 to	 agile
development	methods.

There	 are	 many	 specific	 agile	 development	 methods.	 Most	 promote	 development,
teamwork,	collaboration,	and	process	adaptability	throughout	the	life-cycle	of	the	project.

Agile	 methods	 break	 tasks	 into	 small	 increments	 with	 minimal	 planning,	 and	 do	 not
directly	 involve	 long-term	 planning.	 Iterations	 are	 short	 time	 frames	 (timeboxes)	 that
typically	 last	 from	one	to	 four	weeks.	Each	 iteration	 involves	a	 team	working	through	a
full	software	development	cycle	including	planning,	requirements	analysis,	design,	coding,
unit	 testing,	 and	 acceptance	 testing	 when	 a	 working	 product	 is	 demonstrated	 to
stakeholders.	 This	 minimizes	 overall	 risk	 and	 allows	 the	 project	 to	 adapt	 to	 changes
quickly.	 Stakeholders	 produce	 documentation	 as	 required.	 An	 iteration	 may	 not	 add
enough	 functionality	 to	 warrant	 a	market	 release,	 but	 the	 goal	 is	 to	 have	 an	 available
release	 (with	minimal	 bugs)	 at	 the	 end	 of	 each	 iteration.[8]	Multiple	 iterations	may	 be
required	to	release	a	product	or	new	features.

Team	 composition	 in	 an	 agile	 project	 is	 usually	 cross-functional	 and	 self-organizing
without	consideration	for	any	existing	corporate	hierarchy	or	the	corporate	roles	of	team
members.	 Team	 members	 normally	 take	 responsibility	 for	 tasks	 that	 deliver	 the
functionality	 an	 iteration	 requires.	 They	 decide	 individually	 how	 to	 meet	 an	 iteration's
requirements.

Agile	methods	 emphasize	 face-to-face	 communication	over	written	documents	when	 the	 team	 is	 all	 in	 the	 same
location.	Most	agile	teams	work	in	a	single	open	office	(called	a	bullpen),	which	facilitates	such	communication.
Team	 size	 is	 typically	 small	 (5-9	 people)	 to	 simplify	 team	 communication	 and	 team	 collaboration.	 Larger
development	efforts	may	be	delivered	by	multiple	teams	working	toward	a	common	goal	or	on	different	parts	of	an
effort.	This	may	require	a	co-ordination	of	priorities	across	teams.	When	a	team	works	in	different	locations,	they
maintain	daily	contact	through	videoconferencing,	voice,	e-mail,	etc.

No	matter	what	development	disciplines	are	required,	each	agile	team	will	contain	a	customer	representative.	This
person	is	appointed	by	stakeholders	to	act	on	their	behalf	and	makes	a	personal	commitment	to	being	available	for
developers	to	answer	mid-iteration	problem-domain	questions.	At	the	end	of	each	iteration,	stakeholders	and	the
customer	 representative	 review	 progress	 and	 re-evaluate	 priorities	 with	 a	 view	 to	 optimizing	 the	 return	 on
investment	(ROI)	and	ensuring	alignment	with	customer	needs	and	company	goals.

Most	agile	implementations	use	a	routine	and	formal	daily	face-to-face	communication	among	team	members.	This
specifically	 includes	the	customer	representative	and	any	 interested	stakeholders	as	observers.	 In	a	brief	session,
team	members	report	to	each	other	what	they	did	the	previous	day,	what	they	intend	to	do	today,	and	what	their
roadblocks	are.	This	face-to-face	communication	exposes	problems	as	they	arise.

Agile	 development	 emphasizes	 working	 software	 as	 the	 primary	measure	 of	 progress.	 This,	 combined	 with	 the
preference	 for	 face-to-face	 communication,	 produces	 less	 written	 documentation	 than	 other	methods.	 The	 agile
method	 encourages	 stakeholders	 to	prioritize	wants	with	other	 iteration	outcomes	based	 exclusively	 on	business
value	perceived	at	the	beginning	of	the	iteration.

Specific	 tools	 and	 techniques	 such	 as	 continuous	 integration,	 automated	 or	 xUnit	 test,	 pair	 programming,	 test
driven	development,	design	patterns,	domain-driven	design,	code	refactoring	and	other	techniques	are	often	used
to	improve	quality	and	enhance	project	agility.

Agile	methods	 are	 sometimes	 characterized	 as	 being	 at	 the	 opposite	 end	 of	 the	 spectrum	 from	 "plan-driven"	 or

Characteristics

Pair	programming,
an	XP
development
technique	used	by
agile

Comparison	with	other	methods

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-manifestoprinciples-53
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-54
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-embracing_change-55
https://commons.wikimedia.org/wiki/File:Pair_programming_1.jpg

www.manaraa.com

Agile	methods	 are	 sometimes	 characterized	 as	 being	 at	 the	 opposite	 end	 of	 the	 spectrum	 from	 "plan-driven"	 or
"disciplined"	methods;	agile	 teams	may,	however,	 employ	highly	disciplined	 formal	methods.[9]	A	more	accurate
distinction	 is	 that	methods	 exist	 on	 a	 continuum	 from	 "adaptive"	 to	 "predictive".[10]	Agile	methods	 lie	 on	 the
"adaptive"	 side	of	 this	continuum.	Adaptive	methods	 focus	on	adapting	quickly	 to	changing	realities.	When	the
needs	 of	 a	 project	 change,	 an	 adaptive	 team	 changes	 as	well.	An	 adaptive	 team	will	 have	 difficulty	 describing
exactly	what	will	happen	in	the	future.	The	further	away	a	date	is,	the	more	vague	an	adaptive	method	will	be
about	what	will	happen	on	 that	date.	An	adaptive	 team	cannot	 report	 exactly	what	 tasks	are	being	done	next
week,	but	only	which	features	are	planned	for	next	month.	When	asked	about	a	release	six	months	from	now,	an
adaptive	team	may	only	be	able	to	report	the	mission	statement	for	the	release,	or	a	statement	of	expected	value
vs.	cost.

Predictive	methods,	in	contrast,	focus	on	planning	the	future	in	detail.	A	predictive	team	can	report	exactly	what
features	and	tasks	are	planned	for	the	entire	length	of	the	development	process.	Predictive	teams	have	difficulty
changing	direction.	The	plan	is	typically	optimized	for	the	original	destination	and	changing	direction	can	require
completed	work	to	be	started	over.	Predictive	teams	will	often	institute	a	change	control	board	to	ensure	that	only
the	most	valuable	changes	are	considered.

Formal	methods,	 in	contrast	to	adaptive	and	predictive	methods,	 focus	on	computer	science	theory	with	a	wide
array	 of	 types	 of	 provers.	 A	 formal	 method	 attempts	 to	 prove	 the	 absence	 of	 errors	 with	 some	 level	 of
determinism.	 Some	 formal	 methods	 are	 based	 on	 model	 checking	 and	 provide	 counter	 examples	 for	 code	 that
cannot	 be	 proven.	Generally,	mathematical	models	 (often	 supported	 through	 special	 languages	 see	 SPIN	model
checker)	map	 to	assertions	 about	 requirements.	Formal	methods	are	dependent	on	a	 tool	driven	approach,	 and
may	 be	 combined	 with	 other	 development	 approaches.	 Some	 provers	 do	 not	 easily	 scale.	 Like	 agile	 methods,
manifestos	relevant	to	high	integrity	software	have	been	proposed	in	Crosstalk	(http://elsmar.com/pdf_files/A%2
0Manifesto%20for%20High-Integrity%20Software.pdf).

Agile	methods	have	much	in	common	with	the	"Rapid	Application	Development"	techniques	from	the	1980/90s	as
espoused	by	James	Martin	and	others.

Well-known	agile	software	development	methods	include:

Agile	Modeling
Agile	Unified	Process	(AUP)
Dynamic	Systems	Development	Method	(DSDM)
Essential	Unified	Process	(EssUP)
Extreme	Programming	(XP)
Feature	Driven	Development	(FDD)
Open	Unified	Process	(OpenUP)
Scrum
Velocity	tracking

In	the	literature,	different	terms	refer	to	the	notion	of	method	adaptation,	including	‘method	tailoring’,	 ‘method
fragment	adaptation’	and	‘situational	method	engineering’.	Method	tailoring	is	defined	as:

A	process	or	capability	in	which	human	agents	through	responsive	changes	in,	and	dynamic	interplays
between	 contexts,	 intentions,	 and	method	 fragments	 determine	 a	 system	 development	 approach	 for	 a
specific	project	situation.[11]

Potentially,	almost	all	agile	methods	are	suitable	for	method	tailoring.	Even	the	DSDM	method	is	being	used	for
this	purpose	and	has	been	successfully	tailored	in	a	CMM	context.[12]	Situation-appropriateness	can	be	considered
as	a	distinguishing	characteristic	between	agile	methods	and	traditional	software	development	methods,	with	the
latter	 being	 relatively	much	more	 rigid	 and	 prescriptive.	 The	 practical	 implication	 is	 that	 agile	methods	 allow
project	 teams	 to	 adapt	 working	 practices	 according	 to	 the	 needs	 of	 individual	 projects.	 Practices	 are	 concrete
activities	and	products	that	are	part	of	a	method	framework.	At	a	more	extreme	level,	the	philosophy	behind	the
method,	consisting	of	a	number	of	principles,	could	be	adapted	(Aydin,	2004).[11]

Extreme	Programming	(XP)	makes	the	need	for	method	adaptation	explicit.	One	of	the	fundamental	ideas	of	XP
is	 that	no	one	process	 fits	every	project,	but	 rather	 that	practices	 should	be	 tailored	to	 the	needs	of	 individual
projects.	Partial	 adoption	of	XP	practices,	 as	 suggested	by	Beck,	has	been	 reported	on	 several	 occasions.[13]	A
tailoring	practice	is	proposed	by	Mehdi	Mirakhorli	(http://portal.acm.org/citation.cfm?id=1370143.1370149&coll=
ACM&dl=ACM&CFID=69442744&CFTOKEN=96226775,)	which	 provides	 sufficient	 roadmap	 and	 guideline	 for
adapting	all	the	practices.	RDP	Practice	 is	designed	for	customizing	XP.	This	practice,	 first	proposed	as	a	 long
research	paper	in	the	APSO	workshop	at	the	ICSE	2008	conference,	is	currently	the	only	proposed	and	applicable
method	 for	 customizing	 XP.	 Although	 it	 is	 specifically	 a	 solution	 for	 XP,	 this	 practice	 has	 the	 capability	 of
extending	 to	 other	 methodologies.	 At	 first	 glance,	 this	 practice	 seems	 to	 be	 in	 the	 category	 of	 static	 method
adaptation	but	experiences	with	RDP	Practice	says	that	it	can	be	treated	like	dynamic	method	adaptation.	The
distinction	between	static	method	adaptation	and	dynamic	method	adaptation	is	subtle.[14]	The	key	assumption
behind	static	method	adaptation	 is	that	the	project	context	 is	given	at	the	start	of	a	project	and	remains	 fixed
during	project	 execution.	The	 result	 is	 a	 static	definition	of	 the	project	 context.	Given	 such	a	definition,	 route
maps	can	be	used	 in	order	 to	determine	which	 structured	method	 fragments	 should	be	used	 for	 that	particular
project,	based	on	predefined	sets	of	criteria.	Dynamic	method	adaptation,	 in	contrast,	assumes	that	projects	are
situated	 in	an	emergent	context.	An	emergent	context	 implies	 that	a	project	has	 to	deal	with	emergent	 factors

Agile	methods

Method	tailoring

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-black2009-56
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-boehm2004App-57
http://elsmar.com/pdf_files/A%20Manifesto%20for%20High-Integrity%20Software.pdf
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Aydin2004-58
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Abrahamsson2003-59
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Aydin2004-58
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Abrahamsson2002-60
http://portal.acm.org/citation.cfm?id=1370143.1370149&coll=ACM&dl=ACM&CFID=69442744&CFTOKEN=96226775,
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Aydin2005-61

www.manaraa.com

that	affect	relevant	conditions	but	are	not	predictable.	This	also	means	that	a	project	context	 is	not	 fixed,	but
changing	 during	 project	 execution.	 In	 such	 a	 case	 prescriptive	 route	 maps	 are	 not	 appropriate.	 The	 practical
implication	of	dynamic	method	adaptation	is	that	project	managers	often	have	to	modify	structured	fragments	or
even	innovate	new	fragments,	during	the	execution	of	a	project	(Aydin	et	al.,	2005).[14]

While	agility	can	be	seen	as	a	means	to	an	end,	a	number	of	approaches	have	been	proposed	to	quantify	agility.
Agility	Index	Measurements	(AIM)[15]	score	projects	against	a	number	of	agility	factors	to	achieve	a	total.	The
similarly-named	Agility	Measurement	Index,[16]	scores	developments	against	five	dimensions	of	a	software	project
(duration,	 risk,	 novelty,	 effort,	 and	 interaction).	 Other	 techniques	 are	 based	 on	measurable	 goals.[17]	 Another
study	using	fuzzy	mathematics[18]	has	suggested	that	project	velocity	can	be	used	as	a	metric	of	agility.	There	are
agile	self	assessments	to	determine	whether	a	team	is	using	agile	practices	(Nokia	test,[19]	Karlskrona	test,[20]	42
points	test[21]).

While	such	approaches	have	been	proposed	to	measure	agility,	the	practical	application	of	such	metrics	has	yet	to
be	seen.

One	of	the	early	studies	reporting	gains	in	quality,	productivity,	and	business	satisfaction	by	using	Agile	methods
was	 a	 survey	 conducted	 by	 Shine	 Technologies	 from	 November	 2002	 to	 January	 2003.[22]	 A	 similar	 survey
conducted	 in	 2006	 by	 Scott	Ambler,	 the	Practice	Leader	 for	Agile	Development	with	 IBM	Rational's	Methods
Group	reported	similar	benefits.[23]	In	a	survey	conducted	by	VersionOne	in	2008,	55%	of	respondents	answered
that	Agile	methods	had	been	successful	in	90-100%	of	cases.[24]	Others	claim	that	agile	development	methods	are
still	too	young	to	require	extensive	academic	proof	of	their	success.[25]

Large-scale	agile	software	development	remains	an	active	research	area.[26][27]

Agile	development	has	been	widely	documented	(see	Experience	Reports,	below,	as	well	as	Beck[28]	pg.	157,	and
Boehm	and	Turner[29])	as	working	well	for	small	(<10	developers)	co-located	teams.

Some	things	that	may	negatively	impact	the	success	of	an	agile	project	are:

Large-scale	development	efforts	(>20	developers),	though	scaling	strategies[27]	and	evidence	of	some	large
projects[30]	have	been	described.
Distributed	development	efforts	(non-colocated	teams).	Strategies	have	been	described	in	Bridging	the
Distance[31]	and	Using	an	Agile	Software	Process	with	Offshore	Development[32]

Forcing	an	agile	process	on	a	development	team[33]

Mission-critical	systems	where	failure	is	not	an	option	at	any	cost	(e.g.	software	for	surgical	procedures).
Several	successful	 large-scale	agile	projects	have	been	documented.Template:Where	BT	has	had	several	hundred
developers	 situated	 in	 the	 UK,	 Ireland	 and	 India	 working	 collaboratively	 on	 projects	 and	 using	 Agile
methods.[citation	needed]

In	 terms	 of	 outsourcing	 agile	 development,	 Michael	 Hackett,	 Sr.	 Vice	 President	 of	 LogiGear	 Corporation	 has
stated	 that	 "the	 offshore	 team.	 .	 .	 should	 have	 expertise,	 experience,	 good	 communication	 skills,	 inter-cultural
understanding,	trust	and	understanding	between	members	and	groups	and	with	each	other."[34]

Barry	Boehm	 and	Richard	Turner	 suggest	 that	 risk	 analysis	 be	 used	 to	 choose	 between	 adaptive	 ("agile")	 and
predictive	 ("plan-driven")	methods.[29]	The	 authors	 suggest	 that	 each	 side	 of	 the	 continuum	has	 its	 own	 home
ground	as	follows:

Agile	home	ground:[29]

Low	criticality
Senior	developers
Requirements	change	often
Small	number	of	developers
Culture	that	thrives	on	chaos

Plan-driven	home	ground:[29]

High	criticality
Junior	developers

Measuring	agility

Experience	and	reception

Suitability

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Aydin2005-61
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-62
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-63
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-64
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Kurian_2006-65
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-66
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-67
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-68
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-69
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-70
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-71
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-72
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-oopsla2002-73
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-ambler2006-74
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-beck1999-75
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-boehm2004-76
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-ambler2006-74
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-sstc2007-77
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-BridgingTheDistance-78
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-AgileOffshore-79
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-The_Art_of_Agile_Development-80
https://en.wikibooks.org/w/index.php?title=Template:Where&action=edit&redlink=1
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-PC_World_Viet_Nam-81
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-boehm2004-76
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-boehm2004-76
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-boehm2004-76

www.manaraa.com

Requirements	do	not	change	often
Large	number	of	developers
Culture	that	demands	order

Formal	methods:

Extreme	criticality
Senior	developers
Limited	requirements,	limited	features	see	Wirth's	law
Requirements	that	can	be	modeled
Extreme	quality

Agile	 development	 has	 been	 the	 subject	 of	 several	 conferences.	 Some	 of	 these	 conferences	 have	 had	 academic
backing	 and	 included	 peer-reviewed	 papers,	 including	 a	 peer-reviewed	 experience	 report	 track.	 The	 experience
reports	share	industry	experiences	with	agile	software	development.

As	of	2006,	experience	reports	have	been	or	will	be	presented	at	the	following	conferences:

XP	(2000,[35]	2001,	2002,	2003,	2004,	2005,	2006,[36]	2010	(proceedings	published	by	IEEE)[37])
XP	Universe	(2001[38])
XP/Agile	Universe	(2002,[39]	2003,[40]	2004[41])
Agile	Development	Conference[42]	(2003,2004,2007,2008)	(peer-reviewed;	proceedings	published	by	IEEE)

1.	 Beck,	Kent;	et	al.	(2001).	"Manifesto	for	Agile	Software	Development".	Agile	Alliance.
http://agilemanifesto.org/.	Retrieved	2010-06-14.

2.	 Gerald	M.	Weinberg,	as	quoted	in	Larman,	Craig;	Basili,	Victor	R.	(June	2003).	"Iterative	and	Incremental
Development:	A	Brief	History".	Computer	36	(6):	47–56.	doi:10.1109/MC.2003.1204375.	ISSN	0018-9162.	"We
were	doing	incremental	development	as	early	as	1957,	in	Los	Angeles,	under	the	direction	of	Bernie	Dimsdale
[at	IBM's	ServiceBureau	Corporation].	He	was	a	colleague	of	John	von	Neumann,	so	perhaps	he	learned	it
there,	or	assumed	it	as	totally	natural.	I	do	remember	Herb	Jacobs	(primarily,	though	we	all	participated)
developing	a	large	simulation	for	Motorola,	where	the	technique	used	was,	as	far	as	I	can	tell	All	of	us,	as
far	as	I	can	remember,	thought	waterfalling	of	a	huge	project	was	rather	stupid,	or	at	least	ignorant	of	the
realities.	I	think	what	the	waterfall	description	did	for	us	was	make	us	realize	that	we	were	doing	something
else,	something	unnamed	except	for	'software	development.'".

3.	 Edmonds,	E.	A.	(1974).	"A	Process	for	the	Development	of	Software	for	Nontechnical	Users	as	an	Adaptive
System".	General	Systems	19:	215–18.

4.	 Larman,	Craig	(2004).	Agile	and	Iterative	Development:	A	Manager's	Guide.	Addison-Wesley.	p.	27.
ISBN	9780131111554

5.	 Kent	Beck,	Mike	Beedle,	Arie	van	Bennekum,	Alistair	Cockburn,	Ward	Cunningham,	Martin	Fowler,	James
Grenning,	Jim	Highsmith,	Andrew	Hunt,	Ron	Jeffries,	Jon	Kern,	Brian	Marick,	Robert	C.	Martin,	Stephen	J.
Mellor,	Ken	Schwaber,	Jeff	Sutherland,	and	Dave	Thomas

6.	 Beck,	Kent;	et	al.	(2001).	"Principles	behind	the	Agile	Manifesto".	Agile	Alliance.
http://www.agilemanifesto.org/principles.html.	Retrieved	2010-06-06.

7.	 Anderson,	David	(2005).	"Declaration	of	Interdependence".	http://pmdoi.org.
8.	 Beck,	Kent	(1999).	"Embracing	Change	with	Extreme	Programming".	Computer	32	(10):	70–77.
doi:10.1109/2.796139.

9.	 Black,	S.	E.;	Boca.,	P.	P.;	Bowen,	J.	P.;	Gorman,	J.;	Hinchey,	M.	G.	(September	2009).	"Formal	versus	agile:
Survival	of	the	fittest".	IEEE	Computer	49	(9):	39–45.

10.	 Boehm,	B.;	R.	Turner	(2004).	Balancing	Agility	and	Discipline:	A	Guide	for	the	Perplexed.	Boston,	MA:
Addison-Wesley.	ISBN	0-321-18612-5.	Appendix	A,	pages	165-194

11.	 Aydin,	M.N.,	Harmsen,	F.,	Slooten,	K.	v.,	&	Stagwee,	R.	A.	(2004).	An	Agile	Information	Systems
Development	Method	in	use.	Turk	J	Elec	Engin,	12(2),	127-138

Experience	reports

References

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-82
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-83
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-84
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-85
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-86
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-87
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-88
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-89
https://en.wikipedia.org/wiki/Kent_Beck
http://agilemanifesto.org/
http://agilemanifesto.org/
https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2FMC.2003.1204375
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
http://www.worldcat.org/issn/0018-9162
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/9780131111554
http://www.agilemanifesto.org/principles.html
http://www.agilemanifesto.org/principles.html
https://en.wikipedia.org/wiki/David_Anderson
http://pmdoi.org/
http://pmdoi.org/
https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2F2.796139
https://en.wikipedia.org/wiki/Sue_Black_(computer_scientist)
https://en.wikipedia.org/wiki/Jonathan_Bowen
https://en.wikipedia.org/wiki/Michael_Hinchey
https://en.wikipedia.org/wiki/Barry_Boehm
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-321-18612-5

www.manaraa.com

12.	 Abrahamsson,	P.,	Warsta,	J.,	Siponen,	M.T.,	&	Ronkainen,	J.	(2003).	New	Directions	on	Agile	Methods:	A
Comparative	Analysis.	Proceedings	of	ICSE'03,	244-254

13.	 Abrahamsson,	P.,	Salo,	O.,	Ronkainen,	J.,	&	Warsta,	J.	(2002).	Agile	Software	Development	Methods:	Review
and	Analysis.	VTT	Publications	478

14.	 Aydin,	M.N.,	Harmsen,	F.,	Slooten	van	K.,	&	Stegwee,	R.A.	(2005).	On	the	Adaptation	of	An	Agile
Information(Suren)	Systems	Development	Method.	Journal	of	Database	Management	Special	issue	on	Agile
Analysis,	Design,	and	Implementation,	16(4),	20-24

15.	 "David	Bock's	Weblog	:	Weblog".	Jroller.com.	http://jroller.com/page/bokmann?
entry=improving_your_processes_aim_high.	Retrieved	2010-04-02.

16.	 "Agility	measurement	index".	Doi.acm.org.	http://doi.acm.org/10.1145/1185448.1185509.	Retrieved	2010-04-02.
17.	 Peter	Lappo;	Henry	C.T.	Andrew.	"Assessing	Agility".	http://www.smr.co.uk/presentations/measure.pdf.

Retrieved	2010-06-06.
18.	 Kurian,	Tisni	(2006).	"Agility	Metrics:	A	Quantitative	Fuzzy	Based	Approach	for	Measuring	Agility	of	a

Software	Process"	ISAM-Proceedings	of	International	Conference	on	Agile	Manufacturing'06(ICAM-2006),
Norfolk,	U.S.

19.	 Joe	Little	(2007-12-02).	"Nokia	test,	A	Scrum	specific	test".	Agileconsortium.blogspot.com.
http://agileconsortium.blogspot.com/2007/12/nokia-test.html.	Retrieved	2010-06-06.

20.	 Mark	Seuffert,	Piratson	Technologies,	Sweden.	"Karlskrona	test,	A	generic	agile	adoption	test".	Piratson.se.
http://www.piratson.se/archive/Agile_Karlskrona_Test.html.	Retrieved	2010-06-06.

21.	 "How	agile	are	you,	A	Scrum	specific	test".	Agile-software-development.com.	http://www.agile-software-
development.com/2008/01/how-agile-are-you-take-this-42-point.html.	Retrieved	2010-06-06.

22.	 "Agile	Methodologies	Survey	Results"	(PDF).	Shine	Technologies.	2003.
http://www.shinetech.com/attachments/104_ShineTechAgileSurvey2003-01-17.pdf.	Retrieved	2010-06-03.
"95%	[stated]	that	there	was	either	no	effect	or	a	cost	reduction	.	.	.	93%	stated	that	productivity	was	better	or
significantly	better	.	.	.	88%	stated	that	quality	was	better	or	significantly	better	.	.	.	83%	stated	that	business
satisfaction	was	better	or	significantly	better"

23.	 Ambler,	Scott	(August	3,	2006).	"Survey	Says:	Agile	Works	in	Practice".	Dr.	Dobb's.
http://www.drdobbs.com/architecture-and-
design/191800169;jsessionid=2QJ23QRYM3H4PQE1GHPCKH4ATMY32JVN?queryText=agile+survey.
Retrieved	2010-06-03.	"Only	6	percent	indicated	that	their	productivity	was	lowered	.	.	.	No	change	in
productivity	was	reported	by	34	percent	of	respondents	and	60	percent	reported	increased	productivity.	.	.	.	66
percent	[responded]	that	the	quality	is	higher.	.	.	.	58	percent	of	organizations	report	improved	satisfaction,
whereas	only	3	percent	report	reduced	satisfaction."

24.	 "The	State	of	Agile	Development"	(PDF).	VersionOne,	Inc..	2008.
http://www.versionone.com/pdf/3rdAnnualStateOfAgile_FullDataReport.pdf.	Retrieved	2010-07-03.	"Agile
delivers"

25.	 "Answering	the	"Where	is	the	Proof	That	Agile	Methods	Work"	Question".	Agilemodeling.com.	2007-01-19.
http://www.agilemodeling.com/essays/proof.htm.	Retrieved	2010-04-02.

26.	 Agile	Processes	Workshop	II	Managing	Multiple	Concurrent	Agile	Projects.	Washington:	OOPSLA	2002
27.	 W.	Scott	Ambler	(2006)	"Supersize	Me	(http://www.drdobbs.com/184415491)"	in	Dr.	Dobb's	Journal,

February	15,	2006.
28.	 Beck,	K.	(1999).	Extreme	Programming	Explained:	Embrace	Change.	Boston,	MA:	Addison-Wesley.	ISBN	0-

321-27865-8.
29.	 Boehm,	B.;	R.	Turner	(2004).	Balancing	Agility	and	Discipline:	A	Guide	for	the	Perplexed.	Boston,	MA:

Addison-Wesley.	pp.	55–57.	ISBN	0-321-18612-5.
30.	 Schaaf,	R.J.	(2007).	"Agility	XL",	Systems	and	Software	Technology	Conference	2007	(http://www.sstc-online.

org/Proceedings/2007/pdfs/RJS1722.pdf),	Tampa,	FL
31.	 "Bridging	the	Distance".	Sdmagazine.com.	http://www.drdobbs.com/architecture-and-design/184414899.

Retrieved	2011-02-01.
32.	 Martin	Fowler.	"Using	an	Agile	Software	Process	with	Offshore	Development".	Martinfowler.com.

http://jroller.com/page/bokmann?entry=improving_your_processes_aim_high
http://jroller.com/page/bokmann?entry=improving_your_processes_aim_high
http://doi.acm.org/10.1145/1185448.1185509
http://doi.acm.org/10.1145/1185448.1185509
http://www.smr.co.uk/presentations/measure.pdf
http://www.smr.co.uk/presentations/measure.pdf
http://agileconsortium.blogspot.com/2007/12/nokia-test.html
http://agileconsortium.blogspot.com/2007/12/nokia-test.html
http://www.piratson.se/archive/Agile_Karlskrona_Test.html
http://www.piratson.se/archive/Agile_Karlskrona_Test.html
http://www.agile-software-development.com/2008/01/how-agile-are-you-take-this-42-point.html
http://www.agile-software-development.com/2008/01/how-agile-are-you-take-this-42-point.html
http://www.shinetech.com/attachments/104_ShineTechAgileSurvey2003-01-17.pdf
http://www.shinetech.com/
http://www.shinetech.com/attachments/104_ShineTechAgileSurvey2003-01-17.pdf
https://en.wikipedia.org/wiki/Scott_Ambler
http://www.drdobbs.com/architecture-and-design/191800169;jsessionid=2QJ23QRYM3H4PQE1GHPCKH4ATMY32JVN?queryText=agile+survey
http://www.drdobbs.com/architecture-and-design/191800169;jsessionid=2QJ23QRYM3H4PQE1GHPCKH4ATMY32JVN?queryText=agile+survey
http://www.versionone.com/pdf/3rdAnnualStateOfAgile_FullDataReport.pdf
http://www.versionone.com/pdf/3rdAnnualStateOfAgile_FullDataReport.pdf
http://www.agilemodeling.com/essays/proof.htm
http://www.agilemodeling.com/essays/proof.htm
http://www.drdobbs.com/184415491
https://en.wikipedia.org/wiki/Kent_Beck
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-321-27865-8
https://en.wikipedia.org/wiki/Barry_Boehm
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-321-18612-5
http://www.sstc-online.org/Proceedings/2007/pdfs/RJS1722.pdf
http://www.drdobbs.com/architecture-and-design/184414899
http://www.drdobbs.com/architecture-and-design/184414899
http://www.martinfowler.com/articles/agileOffshore.html

www.manaraa.com

http://www.martinfowler.com/articles/agileOffshore.html.	Retrieved	2010-06-06.
33.	 [The	Art	of	Agile	Development	James	Shore	&	Shane	Warden	pg	47]
34.	 [1]	(http://www.logigear.com/in-the-news/973-agile.html)	LogiGear,	PC	World	Viet	Nam,	Jan	2011
35.	 2000	(http://ciclamino.dibe.unige.it/xp2000/)
36.	 "2006".	Virtual.vtt.fi.	http://virtual.vtt.fi/virtual/xp2006/.	Retrieved	2010-06-06.
37.	 "2010".	Xp2010.org.	http://www.xp2010.org/.	Retrieved	2010-06-06.
38.	 2001	(http://www.xpuniverse.com/2001/xpuPapers.htm)
39.	 2002	(http://www.xpuniverse.com/2002/schedule/schedule)
40.	 2003	(http://www.xpuniverse.com/2003/schedule/index)
41.	 2004	(http://www.xpuniverse.com/2004/schedule/index)
42.	 "Agile	Development	Conference".	Agile200x.org.	http://www.agile200x.org/.	Retrieved	2010-06-06.

Abrahamsson,	P.,	Salo,	O.,	Ronkainen,	J.,	&	Warsta,	J.	(2002).	Agile	Software	Development	Methods:	Review
and	Analysis.	VTT	Publications	478.
Cohen,	D.,	Lindvall,	M.,	&	Costa,	P.	(2004).	An	introduction	to	agile	methods.	In	Advances	in	Computers
(pp.	1–66).	New	York:	Elsevier	Science.
Dingsøyr,	Torgeir,	Dybå,	Tore	and	Moe,	Nils	Brede	(ed.):	Agile	Software	Develoment:	Current	Research	and
Future	Directions	(http://www.amazon.co.uk/Agile-Software-Development-Research-Directions/dp/364212574
3),	Springer,	Berlin	Heidelberg,	2010.
Fowler,	Martin.	Is	Design	Dead?	(http://www.martinfowler.com/articles/designDead.html).	Appeared	in
Extreme	Programming	Explained,	G.	Succi	and	M.	Marchesi,	ed.,	Addison-Wesley,	Boston.	2001.
Larman,	Craig	and	Basili,	Victor	R.	Iterative	and	Incremental	Development:	A	Brief	History	IEEE	Computer,
June	2003	(http://www.highproductivity.org/r6047.pdf)
Riehle,	Dirk.	A	Comparison	of	the	Value	Systems	of	Adaptive	Software	Development	and	Extreme
Programming:	How	Methodologies	May	Learn	From	Each	Other	(http://www.riehle.org/computer-science/rese
arch/2000/xp-2000.html).	Appeared	in	Extreme	Programming	Explained,	G.	Succi	and	M.	Marchesi,	ed.,
Addison-Wesley,	Boston.	2001.
Rother,	Mike	(2009).	Toyota	Kata.	McGraw-Hill.	ISBN	0071635238.	http://books.google.com/?
id=_1lhPgAACAAJ&dq=toyota+kata
M.	Stephens,	D.	Rosenberg.	Extreme	Programming	Refactored:	The	Case	Against	XP.	Apress	L.P.,	Berkeley,
California.	2003.	ISBN	1-59059-096-1

Manifesto	for	Agile	Software	Development	(http://www.agileManifesto.org/)
The	Agile	Alliance	(http://www.agilealliance.org/)
The	Agile	Executive	(http://theagileexecutive.com/)
Article	Two	Ways	to	Build	a	Pyramid	by	John	Mayo-Smith	(http://www.informationweek.com/news/software
/development/showArticle.jhtml?articleID=6507351)
Agile	Software	Development:	A	gentle	introduction	(http://www.agile-process.org/)
The	New	Methodology	(http://martinfowler.com/articles/newMethodology.html)	Martin	Fowler's	description
of	the	background	to	agile	methods
Agile	Journal	(http://www.agilejournal.com/)	-	Largest	online	community	focused	specifically	on	agile
development
[9]	(http://www.dmoz.org%7CComputers/Programming/Methodologies/Agile%7CAgile)]
Agile	Cookbook	(http://agilecookbook.com/)
Ten	Authors	of	The	Agile	Manifesto	Celebrate	its	Tenth	Anniversary	(http://www.pragprog.com/magazines/2
011-02/agile--)

There	are	a	few	industry	standards	related	to	process	improvement	models	we	should	mention	briefly.	For	you	as

Further	reading

External	links

Standards

http://www.martinfowler.com/articles/agileOffshore.html
http://www.logigear.com/in-the-news/973-agile.html
http://ciclamino.dibe.unige.it/xp2000/
http://virtual.vtt.fi/virtual/xp2006/
http://virtual.vtt.fi/virtual/xp2006/
http://www.xp2010.org/
http://www.xp2010.org/
http://www.xpuniverse.com/2001/xpuPapers.htm
http://www.xpuniverse.com/2002/schedule/schedule
http://www.xpuniverse.com/2003/schedule/index
http://www.xpuniverse.com/2004/schedule/index
http://www.agile200x.org/
http://www.agile200x.org/
http://www.amazon.co.uk/Agile-Software-Development-Research-Directions/dp/3642125743
http://www.martinfowler.com/articles/designDead.html
http://www.highproductivity.org/r6047.pdf
http://www.riehle.org/computer-science/research/2000/xp-2000.html
http://books.google.com/?id=_1lhPgAACAAJ&dq=toyota+kata
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0071635238
http://books.google.com/?id=_1lhPgAACAAJ&dq=toyota+kata
https://en.wikibooks.org/wiki/Special:BookSources/1-59059-096-1
http://www.agilemanifesto.org/
http://www.agilealliance.org/
http://theagileexecutive.com/
http://www.informationweek.com/news/software/development/showArticle.jhtml?articleID=6507351
http://www.agile-process.org/
http://martinfowler.com/articles/newMethodology.html
http://www.agilejournal.com/
http://agilecookbook.com/
http://www.pragprog.com/magazines/2011-02/agile--

www.manaraa.com

There	are	a	few	industry	standards	related	to	process	improvement	models	we	should	mention	briefly.	For	you	as
a	beginner,	it	is	enough	to	know	they	exist.	However,	if	you	start	working	for	large	corporations,	you	will	find	that
many	will	follow	one	or	the	other	of	these	standards.

The	Capability	Maturity	Model	 Integration	 (CMMI)	 is	 one	 of	 the	 leading	models	 and	 based	 on	 best	 practice.
Independent	assessments	grade	organizations	on	how	well	they	follow	their	defined	processes,	not	on	the	quality	of
those	processes	or	the	software	produced.	CMMI	has	replaced	CMM.

ISO	 9000	 describes	 standards	 for	 a	 formally	 organized	 process	 to	 manufacture	 a	 product	 and	 the	 methods	 of
managing	 and	monitoring	progress.	Although	 the	 standard	was	 originally	 created	 for	 the	manufacturing	 sector,
ISO	9000	standards	have	been	applied	to	software	development	as	well.	Like	CMMI,	certification	with	ISO	9000
does	not	guarantee	the	quality	of	the	end	result,	only	that	formalized	business	processes	have	been	followed.

ISO	15504,	also	known	as	Software	Process	Improvement	Capability	Determination	(SPICE),	is	a	"framework	for
the	assessment	of	software	processes".	This	standard	is	aimed	at	setting	out	a	clear	model	for	process	comparison.
SPICE	is	used	much	like	CMMI.	It	models	processes	to	manage,	control,	guide	and	monitor	software	development.
This	 model	 is	 then	 used	 to	 measure	 what	 a	 development	 organization	 or	 project	 team	 actually	 does	 during
software	 development.	 This	 information	 is	 analyzed	 to	 identify	 weaknesses	 and	 drive	 improvement.	 It	 also
identifies	strengths	that	can	be	continued	or	integrated	into	common	practice	for	that	organization	or	team.

CMMI	Official	Website	(http://www.sei.cmu.edu/cmmi)
Capability	Maturity	Model	(http://www.dmoz.org/Computers/Programming/Methodologies/Capability_Matu
rity_Model/)	at	DMOZ
ISO	9000	(http://www.dmoz.org/Science/Reference/Standards/Individual_Standards/ISO/ISO_9000/)	at
DMOZ
Introduction	to	ISO	9000	and	ISO	14000	(http://www.iso.org/iso/iso_catalogue/management_standards/iso_
9000_iso_14000.htm)
ISO	15504	News	(isospice)	(http://www.isospice.com)
Automotive	SPICE	(http://www.automotivespice.com/)

The	Systems	Development	Life	Cycle	(SDLC),	or	Software	Development	Life
Cycle	 in	 systems	 engineering,	 information	 systems	 and	 software	 engineering,	 is	 the
process	of	 creating	or	altering	 systems,	 and	 the	models	 and	methodologies	 that	people
use	 to	develop	 these	 systems.	The	concept	generally	 refers	 to	computer	or	 information
systems.

In	 software	 engineering	 the	 SDLC	 concept	 underpins	 many	 kinds	 of	 software
development	methodologies.	These	methodologies	 form	the	 framework	for	planning	and
controlling	the	creation	of	an	information	system[1]:	the	software	development	process.

Systems	 Development	 Life	 Cycle	 (SDLC)	 is	 a	 process	 used	 by	 a	 systems	 analyst	 to
develop	 an	 information	 system,	 including	 requirements,	 validation,	 training,	 and	 user
(stakeholder)	ownership.	Any	SDLC	should	result	in	a	high	quality	system	that	meets	or
exceeds	customer	expectations,	reaches	completion	within	time	and	cost	estimates,	works
effectively	 and	 efficiently	 in	 the	 current	 and	 planned	 Information	 Technology
infrastructure,	and	is	inexpensive	to	maintain	and	cost-effective	to	enhance.[2]

Computer	 systems	 are	 complex	 and	 often	 (especially	with	 the	 recent	 rise	 of	 Service-
Oriented	 Architecture)	 link	 multiple	 traditional	 systems	 potentially	 supplied	 by
different	 software	 vendors.	 To	manage	 this	 level	 of	 complexity,	 a	 number	 of	 SDLC
models	 have	 been	 created:	 "waterfall";	 "fountain";	 "spiral";	 "build	 and	 fix";	 "rapid
prototyping";	"incremental";	and	"synchronize	and	stabilize".	[3]

SDLC	models	 can	 be	 described	 along	 a	 spectrum	 of	 agile	 to	 iterative	 to	 sequential.
Agile	 methodologies,	 such	 as	 XP	 and	 Scrum,	 focus	 on	 light-weight	 processes	 which
allow	for	rapid	changes	along	the	development	cycle.	Iterative	methodologies,	such	as
Rational	Unified	Process	and	Dynamic	Systems	Development	Method,	focus	on	limited
project	scopes	and	expanding	or	improving	products	by	multiple	iterations.	Sequential
or	 big-design-up-front	 (BDUF)	 models,	 such	 as	 Waterfall,	 focus	 on	 complete	 and
correct	 planning	 to	 guide	 large	 projects	 and	 risks	 to	 successful	 and	 predictable
results[citation	needed].	Other	models,	such	as	Anamorphic	Development,	tend	to	focus
on	a	form	of	development	that	is	guided	by	project	scope	and	adaptive	iterations	of	feature	development.

In	project	management	a	project	can	be	defined	both	with	a	project	life	cycle	(PLC)	and	an	SDLC,	during	which

Capability	Maturity	Model	Integration

ISO	9000

ISO	15504

External	Links

Life	Cycle

Model	of	the
Systems
Development	Life
Cycle

Model	of	the	Systems
Development	Life
Cycle

Overview

https://en.wikipedia.org/wiki/Capability_Maturity_Model_Integration
https://en.wikipedia.org/wiki/ISO_9000
https://en.wikipedia.org/wiki/ISO_15504
http://www.sei.cmu.edu/cmmi
http://www.dmoz.org/Computers/Programming/Methodologies/Capability_Maturity_Model/
https://en.wikipedia.org/wiki/DMOZ
http://www.dmoz.org/Science/Reference/Standards/Individual_Standards/ISO/ISO_9000/
https://en.wikipedia.org/wiki/DMOZ
http://www.iso.org/iso/iso_catalogue/management_standards/iso_9000_iso_14000.htm
http://www.isospice.com/
http://www.automotivespice.com/
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-90
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-91
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-92
https://en.wikibooks.org/wiki/Wikibooks:OR
https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg
https://commons.wikimedia.org/wiki/File:CPT-SystemLifeSycle.svg

www.manaraa.com

In	project	management	a	project	can	be	defined	both	with	a	project	life	cycle	(PLC)	and	an	SDLC,	during	which
slightly	different	activities	occur.	According	to	Taylor	(2004)	"the	project	life	cycle	encompasses	all	the	activities	of
the	project,	while	the	systems	development	life	cycle	focuses	on	realizing	the	product	requirements".[4]

The	 Systems	 Life	 Cycle	 (SLC)	 is	 a	 type	 of	 methodology	 used	 to	 describe	 the	 process	 for	 building
information	systems,	intended	to	develop	information	systems	in	a	very	deliberate,	structured	and	methodical	way,
reiterating	 each	 stage	 of	 the	 life	 cycle.	The	 systems	 development	 life	 cycle,	 according	 to	Elliott	&	 Strachan	&
Radford	(2004),	"originated	in	the	1960s,to	develop	large	scale	functional	business	systems	in	an	age	of	large	scale
business	 conglomerates.	 Information	 systems	 activities	 revolved	 around	 heavy	 data	 processing	 and	 number
crunching	routines".[5]

Several	 systems	 development	 frameworks	 have	 been	 partly	 based	 on	 SDLC,	 such	 as	 the	 Structured	 Systems
Analysis	and	Design	Method	(SSADM)	produced	for	the	UK	government	Office	of	Government	Commerce	in	the
1980s.	Ever	since,	according	to	Elliott	(2004),	"the	traditional	life	cycle	approaches	to	systems	development	have
been	increasingly	replaced	with	alternative	approaches	and	frameworks,	which	attempted	to	overcome	some	of	the
inherent	deficiencies	of	the	traditional	SDLC".[5]

The	 System	 Development	 Life	 Cycle	 framework	 provides	 a	 sequence	 of	 activities	 for	 system	 designers	 and
developers	to	follow.	It	consists	of	a	set	of	steps	or	phases	in	which	each	phase	of	the	SDLC	uses	the	results	of	the
previous	one.

A	Systems	Development	Life	Cycle	(SDLC)	adheres	to	important	phases	that	are	essential	for	developers,	such	as
planning,	 analysis,	 design,	 and	 implementation,	 and	 are	 explained	 in	 the	 section	 below.	 A	 number	 of	 system
development	 life	 cycle	 (SDLC)	 models	 have	 been	 created:	 waterfall,	 fountain,	 spiral,	 build	 and	 fix,	 rapid
prototyping,	incremental,	and	synchronize	and	stabilize.	The	oldest	of	these,	and	the	best	known,	is	the	waterfall
model:	a	sequence	of	stages	in	which	the	output	of	each	stage	becomes	the	input	for	the	next.	These	stages	can	be
characterized	and	divided	up	in	different	ways,	including	the	following[6]:

Project	planning,	feasibility	study:	Establishes	a	high-level	view	of	the	intended	project	and
determines	its	goals.
Systems	analysis,	requirements	definition:	Refines	project	goals	into	defined	functions	and	operation
of	the	intended	application.	Analyzes	end-user	information	needs.
Systems	design:	Describes	desired	features	and	operations	in	detail,	including	screen	layouts,	business	rules,
process	diagrams,	pseudocode	and	other	documentation.
Implementation:	The	real	code	is	written	here.
Integration	and	testing:	Brings	all	the	pieces	together	into	a	special	testing	environment,	then	checks	for
errors,	bugs	and	interoperability.
Acceptance,	installation,	deployment:	The	final	stage	of	initial	development,	where	the	software	is
put	into	production	and	runs	actual	business.
Maintenance:	What	happens	during	the	rest	of	the	software's	life:	changes,	correction,	additions,	moves	to	a
different	computing	platform	and	more.	This,	the	least	glamorous	and	perhaps	most	important	step	of	all,	goes
on	seemingly	forever.

In	the	following	example	(see	picture)	these	stage	of	the	Systems	Development	Life	Cycle	are	divided	in	ten	steps
from	definition	to	creation	and	modification	of	IT	work	products:

History

Systems	development	phases

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-93
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Ell04-94
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Ell04-94
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-95

www.manaraa.com

The	tenth	phase	occurs	when	the	system	is	disposed	of	and	the	task
performed	is	either	eliminated	or	transferred	to	other	systems.	The
tasks	and	work	products	for	each	phase	are	described	in	subsequent
chapters.	[7]

Not	every	project	will	require	that	the	phases	be	sequentially	executed.	However,	the	phases	are	interdependent.
Depending	upon	the	size	and	complexity	of	the	project,	phases	may	be	combined	or	may	overlap.[7]

The	 goal	 of	 system	 analysis	 is	 to	 determine	 where	 the	 problem	 is	 in	 an	 attempt	 to	 fix	 the	 system.	 This	 step
involves	breaking	down	the	system	in	different	pieces	to	analyze	the	situation,	analyzing	project	goals,	breaking
down	what	needs	to	be	created	and	attempting	to	engage	users	so	that	definite	requirements	can	be	defined.

Requirements	 analysis	 sometimes	 requires	 individuals/teams	 from	 client	 as	well	 as	 service	 provider	 sides	 to	 get
detailed	and	accurate	requirements;	often	there	has	to	be	a	lot	of	communication	to	and	from	to	understand	these
requirements.	Requirement	gathering	is	the	most	crucial	aspect	as	many	times	communication	gaps	arise	in	this
phase	and	this	leads	to	validation	errors	and	bugs	in	the	software	program.

In	systems	design	the	design	 functions	and	operations	are	described	 in	detail,	 including	screen	 layouts,	business
rules,	 process	 diagrams	 and	 other	 documentation.	 The	 output	 of	 this	 stage	 will	 describe	 the	 new	 system	 as	 a
collection	of	modules	or	subsystems.

The	design	stage	takes	as	its	initial	input	the	requirements	identified	in	the	approved	requirements	document.	For
each	 requirement,	 a	 set	 of	 one	 or	more	 design	 elements	will	 be	 produced	 as	 a	 result	 of	 interviews,	workshops,
and/or	prototype	efforts.

Design	 elements	 describe	 the	 desired	 software	 features	 in	 detail,	 and	 generally	 include	 functional	 hierarchy
diagrams,	screen	layout	diagrams,	tables	of	business	rules,	business	process	diagrams,	pseudocode,	and	a	complete
entity-relationship	 diagram	 with	 a	 full	 data	 dictionary.	 These	 design	 elements	 are	 intended	 to	 describe	 the
software	 in	 sufficient	 detail	 that	 skilled	 programmers	may	 develop	 the	 software	 with	minimal	 additional	 input
design.

Modular	and	subsystem	programming	code	will	be	accomplished	during	this	stage.	Unit	testing	and	module	testing
are	done	in	this	stage	by	the	developers.	This	stage	is	intermingled	with	the	next	in	that	individual	modules	will
need	testing	before	integration	to	the	main	project.

The	 code	 is	 tested	 at	 various	 levels	 in	 software	 testing.	 Unit,	 system	 and	 user	 acceptance	 testings	 are	 often
performed.	This	is	a	grey	area	as	many	different	opinions	exist	as	to	what	the	stages	of	testing	are	and	how	much
if	any	iteration	occurs.	Iteration	is	not	generally	part	of	the	waterfall	model,	but	usually	some	occur	at	this	stage.
In	the	testing	the	whole	system	is	test	one	by	one

Following	are	the	types	of	testing:

Defect	testing
Path	testing
Data	set	testing
Unit	testing
System	testing
Integration	testing
Black	box	testing

System	analysis

Design

Implementation

Testing

https://commons.wikimedia.org/wiki/File:Systems_Development_Life_Cycle.jpg
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-US_DJ03-96
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-US_DJ03-96

www.manaraa.com

White	box	testing
Regression	testing
Automation	testing
User	acceptance	testing
Performance	testing

The	deployment	of	 the	 system	 includes	changes	and	enhancements	before	 the	decommissioning	or	 sunset	of	 the
system.	 Maintaining	 the	 system	 is	 an	 important	 aspect	 of	 SDLC.	 As	 key	 personnel	 change	 positions	 in	 the
organization,	new	changes	will	be	implemented,	which	will	require	system	updates.

The	Systems	Analysis	 and	Design	 (SAD)	 is	 the	 process	 of	 developing	 Information	 Systems	 (IS)	 that
effectively	use	of	hardware,	software,	data,	process,	and	people	to	support	the	company’s	business	objectives.

The	 Systems	 Development	 Life	 Cycle	 (SDLC)	 phases	 serve	 as	 a
programmatic	 guide	 to	 project	 activity	 and	 provide	 a	 flexible	 but
consistent	way	 to	 conduct	 projects	 to	 a	 depth	matching	 the	 scope	 of
the	 project.	Each	 of	 the	 SDLC	phase	 objectives	 are	 described	 in	 this
section	with	key	deliverables,	a	description	of	recommended	tasks,	and
a	summary	of	related	control	objectives	for	effective	management.	It	is
critical	 for	 the	 project	 manager	 to	 establish	 and	 monitor	 control
objectives	 during	 each	 SDLC	 phase	while	 executing	 projects.	 Control
objectives	 help	 to	 provide	 a	 clear	 statement	 of	 the	 desired	 result	 or
purpose	 and	 should	 be	 used	 throughout	 the	 entire	 SDLC	 process.
Control	 objectives	 can	 be	 grouped	 into	 major	 categories	 (Domains),
and	relate	to	the	SDLC	phases	as	shown	in	the	figure.[8]

To	 manage	 and	 control	 any	 SDLC	 initiative,	 each	 project	 will	 be
required	 to	 establish	 some	 degree	 of	 a	 Work	 Breakdown	 Structure
(WBS)	 to	 capture	 and	 schedule	 the	 work	 necessary	 to	 complete	 the
project.	The	WBS	and	all	programmatic	material	should	be	kept	in	the
“Project	Description”	section	of	the	project	notebook.	The	WBS	format
is	mostly	 left	 to	 the	 project	manager	 to	 establish	 in	 a	way	 that	 best
describes	 the	 project	work.	There	 are	 some	 key	 areas	 that	must	 be	 defined	 in	 the	WBS	 as	 part	 of	 the	 SDLC
policy.	The	following	diagram	describes	three	key	areas	that	will	be	addressed	in	the	WBS	in	a	manner	established
by	the	project	manager.[8]

The	 upper	 section	 of	 the	Work	 Breakdown	 Structure	 (WBS)	 should
identify	the	major	phases	and	milestones	of	the	project	 in	a	summary
fashion.	 In	 addition,	 the	 upper	 section	 should	provide	 an	 overview	 of
the	full	scope	and	timeline	of	the	project	and	will	be	part	of	the	initial
project	 description	 effort	 leading	 to	 project	 approval.	 The	 middle
section	 of	 the	WBS	 is	 based	 on	 the	 seven	Systems	Development	Life
Cycle	(SDLC)	phases	as	a	guide	for	WBS	task	development.	The	WBS
elements	 should	 consist	 of	 milestones	 and	 “tasks”	 as	 opposed	 to
“activities”	and	have	a	definitive	period	(usually	two	weeks	or	more).
Each	task	must	have	a	measurable	output	(e.x.	document,	decision,	or
analysis).	A	WBS	task	may	rely	on	one	or	more	activities	(e.g.	software
engineering,	 systems	 engineering)	 and	 may	 require	 close	 coordination
with	other	tasks,	either	internal	or	external	to	the	project.	Any	part	of
the	 project	 needing	 support	 from	 contractors	 should	 have	 a	 Statement	 of	 work	 (SOW)	written	 to	 include	 the
appropriate	tasks	from	the	SDLC	phases.	The	development	of	a	SOW	does	not	occur	during	a	specific	phase	of
SDLC	but	is	developed	to	include	the	work	from	the	SDLC	process	that	may	be	conducted	by	external	resources
such	as	contractors	and	struct.[8]

Baselines	are	an	important	part	of	the	Systems	Development	Life	Cycle	(SDLC).	These	baselines	are	established
after	four	of	the	five	phases	of	the	SDLC	and	are	critical	to	the	iterative	nature	of	the	model	.[9]	Each	baseline	is
considered	as	a	milestone	in	the	SDLC.

Functional	Baseline:	established	after	the	conceptual	design	phase.
Allocated	Baseline:	established	after	the	preliminary	design	phase.
Product	Baseline:	established	after	the	detail	design	and	development	phase.
Updated	Product	Baseline:	established	after	the	production	construction	phase.

Operations	and	maintenance

Systems	Analysis	and	Design

Systems	development	life	cycle	topics

Management	and	control

SDLC	Phases	Related	to	Management
Controls.[8]

Work	breakdown	structured	organization

Work	Breakdown	Structure.[8]

Baselines	in	the	SDLC

Complementary	to	SDLC

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-USHR99-97
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-USHR99-97
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-USHR99-97
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-98
https://commons.wikimedia.org/wiki/File:SDLC_Phases_Related_to_Management_Controls.jpg
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-USHR99-97
https://commons.wikimedia.org/wiki/File:SDLC_Work_Breakdown_Structure.jpg
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-USHR99-97

www.manaraa.com

Complementary	Software	development	methods	to	Systems	Development	Life	Cycle	(SDLC)	are:

Software	Prototyping
Joint	Applications	Design	(JAD)
Rapid	Application	Development	(RAD)
Extreme	Programming	(XP);	extension	of	earlier	work	in	Prototyping	and	RAD.
Open	Source	Development
End-user	development
Object	Oriented	Programming

Comparison	of	Methodology	Approaches	(Post,	&	Anderson	2006)[10]

SDLC RAD
Open
Source

Objects JAD Prototyping
End
User

Control Formal MIS Weak Standards Joint User User

Time	Frame Long Short Medium Any Medium Short Short

Users Many Few Few Varies Few One	or	Two One

MIS	staff Many Few Hundreds Split Few One	or	Two None

Transaction/DSS Transaction Both Both Both DSS DSS DSS

Interface Minimal Minimal Weak Windows Crucial Crucial Crucial

Documentation
and	training

Vital Limited Internal In	Objects Limited Weak None

Integrity	and
security

Vital Vital Unknown In	Objects Limited Weak Weak

Reusability Limited Some Maybe Vital Limited Weak None

Few	people	in	the	modern	computing	world	would	use	a	strict	waterfall	model	for	their	Systems	Development	Life
Cycle	(SDLC)	as	many	modern	methodologies	have	superseded	this	thinking.	Some	will	argue	that	the	SDLC	no
longer	applies	to	models	like	Agile	computing,	but	it	is	still	a	term	widely	in	use	in	Technology	circles.	The	SDLC
practice	 has	 advantages	 in	 traditional	 models	 of	 software	 development,	 that	 lends	 itself	 more	 to	 a	 structured
environment.	The	disadvantages	to	using	the	SDLC	methodology	is	when	there	is	need	for	iterative	development
or	(i.e.	web	development	or	e-commerce)	where	stakeholders	need	to	review	on	a	regular	basis	the	software	being
designed.	Instead	of	viewing	SDLC	from	a	strength	or	weakness	perspective,	it	is	far	more	important	to	take	the
best	practices	 from	the	SDLC	model	and	apply	 it	 to	whatever	may	be	most	appropriate	 for	 the	software	being
designed.

A	comparison	of	the	strengths	and	weaknesses	of	SDLC:

Strength	and	Weaknesses	of	SDLC	[10]

Strengths	and	weaknesses

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Post.2C_G._2006-99
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Post.2C_G._2006-99

www.manaraa.com

Strength	and	Weaknesses	of	SDLC	[10]

Strengths Weaknesses

Control. Increased	development	time.

Monitor	Large	projects. Increased	development	cost.

Detailed	steps. Systems	must	be	defined	up	front.

Evaluate	costs	and	completion	targets. Rigidity.

Documentation. Hard	to	estimate	costs,	project	overruns.

Well	defined	user	input. User	input	is	sometimes	limited.

Ease	of	maintenance.

Development	and	design	standards.

Tolerates	changes	in	MIS	staffing.

An	alternative	 to	 the	SDLC	 is	Rapid	Application	Development,	which	combines	prototyping,	Joint	Application
Development	and	implementation	of	CASE	tools.	The	advantages	of	RAD	are	speed,	reduced	development	cost,
and	active	user	involvement	in	the	development	process.

1.	 SELECTING	A	DEVELOPMENT	APPROACH	(http://www.cms.hhs.gov/SystemLifecycleFramework/Downl
oads/SelectingDevelopmentApproach.pdf).	Retrieved	27	October	2008.

2.	 "Systems	Development	Life	Cycle"	(http://foldoc.org/foldoc.cgi?Systems+Development+Life+Cycle).	In:
Foldoc(2000-12-24)

3.	 http://docs.google.com/viewer?
a=v&q=cache:bfhOl8jp1S8J:condor.depaul.edu/~jpetlick/extra/394/Session2.ppt+&hl=en&pid=bl&srcid=ADGEEShCfW0_MLC4wRbczfUxrndHTkbwguF9fZuaUCe0RDyOCWyO2PTmaPhHnZ4jRhZZ75maVO_7gVAD2ex5-
QIhrj1683hMefBNkak7FkQJCAwd-i0-_aQfEVEEKP177h4mmkvMMWJ7&sig=AHIEtbRhMlZ-
TUyioKEhLQQxXk1WoSJXWA

4.	 James	Taylor	(2004).	Managing	Information	Technology	Projects.	p.39..
5.	 Geoffrey	Elliott	&	Josh	Strachan	(2004)	Global	Business	Information	Technology.	p.87.
6.	 http://www.computerworld.com/s/article/71151/System_Development_Life_Cycle
7.	 US	Department	of	Justice	(2003).	INFORMATION	RESOURCES	MANAGEMENT	(http://www.usdoj.gov/j
md/irm/lifecycle/ch1.htm)	Chapter	1.	Introduction.

8.	 U.S.	House	of	Representatives	(1999).	Systems	Development	Life-Cycle	Policy	(http://www.house.gov/cao-opp
/PDFSolicitations/SDLCPOL.pdf).	p.13.

9.	 Blanchard,	B.	S.,	&	Fabrycky,	W.	J.(2006)	Systems	engineering	and	analysis	(4th	ed.)	New	Jersey:	Prentice
Hall.	p.31

10.	 Post,	G.,	&	Anderson,	D.,	(2006).	Management	information	systems:	Solving	business	problems	with
information	technology.	(4th	ed.).	New	York:	McGraw-Hill	Irwin.

Blanchard,	B.	S.,	&	Fabrycky,	W.	J.(2006)	Systems	engineering	and	analysis	(4th	ed.)	New	Jersey:	Prentice
Hall.
Cummings,	Haag	(2006).	Management	Information	Systems	for	the	Information	Age.	Toronto,	McGraw-Hill
Ryerson
Beynon-Davies	P.	(2009).	Business	Information	Systems.	Palgrave,	Basingstoke.	ISBN	978-0-230-20368-6
Computer	World,	2002	(http://www.computerworld.com/developmenttopics/development/story/0,10801,71151
,00.html),	Retrieved	on	June	22,	2006	from	the	World	Wide	Web:
Management	Information	Systems,	2005	(http://www.cbe.wwu.edu/misclasses/MIS320_Spring06_Bajwa/Cha
p006.ppt),	Retrieved	on	June	22,	2006	from	the	World	Wide	Web:

References

Further	reading

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Post.2C_G._2006-99
http://www.cms.hhs.gov/SystemLifecycleFramework/Downloads/SelectingDevelopmentApproach.pdf
http://foldoc.org/foldoc.cgi?Systems+Development+Life+Cycle
http://docs.google.com/viewer?a=v&q=cache:bfhOl8jp1S8J:condor.depaul.edu/~jpetlick/extra/394/Session2.ppt+&hl=en&pid=bl&srcid=ADGEEShCfW0_MLC4wRbczfUxrndHTkbwguF9fZuaUCe0RDyOCWyO2PTmaPhHnZ4jRhZZ75maVO_7gVAD2ex5-QIhrj1683hMefBNkak7FkQJCAwd-i0-_aQfEVEEKP177h4mmkvMMWJ7&sig=AHIEtbRhMlZ-TUyioKEhLQQxXk1WoSJXWA
http://www.computerworld.com/s/article/71151/System_Development_Life_Cycle
http://www.usdoj.gov/jmd/irm/lifecycle/ch1.htm
http://www.house.gov/cao-opp/PDFSolicitations/SDLCPOL.pdf
https://en.wikibooks.org/wiki/Special:BookSources/978-0-230-20368-6
http://www.computerworld.com/developmenttopics/development/story/0,10801,71151,00.html
http://www.cbe.wwu.edu/misclasses/MIS320_Spring06_Bajwa/Chap006.ppt

www.manaraa.com

Agile	software	development	(Agile)

Pros
Minimizes	feature	creep	by	developing	in	short	intervals
resulting	in	miniature	software	projects	and	releasing	the

Slide	show	video	(https://www.youtube.com/watch?v=TfxAfP4LBSA)
The	Agile	System	Development	Lifecycle	(http://www.ambysoft.com/essays/agileLifecycle.html)
Pension	Benefit	Guaranty	Corporation	-	Information	Technology	Solutions	Lifecycle	Methodology	(http://ww
w.pbgc.gov/docs/ITSLCM%20V2007.1.pdf)
HHS	Enterprise	Performance	Life	Cycle	Framework	(http://www.hhs.gov/ocio/eplc/eplc_framework_v1point
2.pdf)

Rapid	application	development	(RAD)	refers	to	a	type	of	software	development	methodology	that	uses
minimal	planning	 in	 favor	of	 rapid	prototyping.	The	"planning"	of	 software	developed	using	RAD	is	 interleaved
with	writing	the	software	itself.	The	lack	of	extensive	pre-planning	generally	allows	software	to	be	written	much
faster,	and	makes	it	easier	to	change	requirements.

Rapid	 application	 development	 is	 a	 software	 development	 methodology	 that	 involves	 methods	 like	 iterative
development	 and	 software	 prototyping.	 According	 to	 Whitten	 (2004),	 it	 is	 a	 merger	 of	 various	 structured
techniques,	 especially	 data-driven	 Information	 Engineering,	 with	 prototyping	 techniques	 to	 accelerate	 software
systems	development.[1]

In	 rapid	 application	 development,	 structured	 techniques	 and	 prototyping	 are	 especially	 used	 to	 define	 users'
requirements	and	to	design	the	final	system.	The	development	process	starts	with	the	development	of	preliminary
data	models	and	business	process	models	using	structured	techniques.	In	the	next	stage,	requirements	are	verified
using	prototyping,	eventually	to	refine	the	data	and	process	models.	These	stages	are	repeated	iteratively;	further
development	 results	 in	 "a	 combined	 business	 requirements	 and	 technical	 design	 statement	 to	 be	 used	 for
constructing	new	systems".[1]

RAD	 approaches	 may	 entail	 compromises	 in	 functionality	 and	 performance	 in	 exchange	 for	 enabling	 faster
development	and	facilitating	application	maintenance.

Rapid	application	development	is	a	term	originally	used	to	describe	a	software	development	process	introduced	by
James	Martin	 in	1991.	Martin's	methodology	involves	 iterative	development	and	the	construction	of	prototypes.
More	 recently,	 the	 term	and	 its	acronym	have	come	to	be	used	 in	a	broader,	general	 sense	 that	encompasses	a
variety	of	methods	aimed	at	speeding	application	development,	such	as	the	use	of	software	frameworks	of	varied
types,	such	as	web	application	frameworks.

Rapid	application	development	was	a	response	to	non-agile	processes	developed	in	the	1970s	and	1980s,	such	as
the	 Structured	 Systems	 Analysis	 and	 Design	Method	 and	 other	Waterfall	 models.	 One	 problem	 with	 previous
methodologies	was	that	applications	took	so	long	to	build	that	requirements	had	changed	before	the	system	was
complete,	 resulting	 in	 inadequate	 or	 even	 unusable	 systems.	 Another	 problem	 was	 the	 assumption	 that	 a
methodical	 requirements	 analysis	 phase	 alone	 would	 identify	 all	 the	 critical	 requirements.	 Ample
evidence[citation	needed]	attests	to	the	fact	that	this	is	seldom	the	case,	even	for	projects	with	highly	experienced
professionals	at	all	levels.

Starting	with	the	ideas	of	Brian	Gallagher,	Alex	Balchin,	Barry	Boehm	and	Scott	Shultz,	James	Martin	developed
the	 rapid	application	development	approach	during	 the	1980s	at	 IBM	and	 finally	 formalized	 it	by	publishing	a
book	in	1991,	Rapid	Application	Development.

The	 shift	 from	 traditional	 session-based	 client/server	 development	 to	 open	 sessionless	 and	 collaborative
development	 like	Web	2.0	has	 increased	the	need	 for	 faster	 iterations	through	the	phases	of	 the	SDLC.[2]	This,
coupled	with	the	growing	use	of	open	source	frameworks	and	products	in	core	commercial	development,	has,	for
many	developers,	rekindled	interest	in	finding	a	silver	bullet	RAD	methodology.

Although	 most	 RAD	 methodologies	 foster	 software	 re-use,	 small	 team	 structure	 and	 distributed	 system
development,	 most	 RAD	 practitioners	 recognize	 that,	 ultimately,	 no	 one	 “rapid”	 methodology	 can	 provide	 an
order	of	magnitude	improvement	over	any	other	development	methodology.

All	 types	 of	 RAD	 have	 the	 potential	 for	 providing	 a	 good	 framework	 for	 faster	 product	 development	 with
improved	 software	 quality,	 but	 successful	 implementation	 and	 benefits	 often	 hinge	 on	 project	 type,	 schedule,
software	release	cycle	and	corporate	culture.	It	may	also	be	of	interest	that	some	of	the	largest	software	vendors
such	as	Microsoft[3]	and	IBM[4]	do	not	extensively	use	RAD	in	the	development	of	their	flagship	products	and	for
the	most	part,	they	still	primarily	rely	on	traditional	waterfall	methodologies	with	some	degree	of	spiraling.[5]

This	 table	 contains	 a	 high-level	 summary	 of	 some	 of	 the	major	 types	 of	RAD	and	 their	 relative	 strengths	 and
weaknesses.

External	links

Rapid	Application	Development

Overview

History

Relative	effectiveness

https://www.youtube.com/watch?v=TfxAfP4LBSA
http://www.ambysoft.com/essays/agileLifecycle.html
http://www.pbgc.gov/docs/ITSLCM%20V2007.1.pdf
http://www.hhs.gov/ocio/eplc/eplc_framework_v1point2.pdf
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-WBD04-100
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-WBD04-100
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-RAD1-101
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-SpecsOnLine-102
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-RAD2-103
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-RAD3-104

www.manaraa.com

product	in	mini-increments.

Cons

Short	iteration	may	add	too	little	functionality,	leading	to
significant	delays	in	final	iterations.	Since	Agile	emphasizes
real-time	communication	(preferably	face-to-face),	using	it	is
problematic	for	large	multi-team	distributed	system
development.	Agile	methods	produce	very	little	written
documentation	and	require	a	significant	amount	of	post-project
documentation.

Extreme	Programming	(XP)

Pros
Lowers	the	cost	of	changes	through	quick	spirals	of	new
requirements.	Most	design	activity	occurs	incrementally	and	on
the	fly.

Cons

Programmers	must	work	in	pairs,	which	is	difficult	for	some
people.	No	up-front	“detailed	design”	occurs,	which	can	result
in	more	redesign	effort	in	the	long	term.	The	business	champion
attached	to	the	project	full	time	can	potentially	become	a	single
point	of	failure	for	the	project	and	a	major	source	of	stress	for	a
team.

Joint	application	design	(JAD)

Pros
Captures	the	voice	of	the	customer	by	involving	them	in	the
design	and	development	of	the	application	through	a	series	of
collaborative	workshops	called	JAD	sessions.

Cons
The	client	may	create	an	unrealistic	product	vision	and	request
extensive	gold-plating,	leading	a	team	to	over-	or	under-develop
functionality.

Lean	software	development	(LD)

Pros
Creates	minimalist	 solutions	(i.e.,	needs	determine	technology)
and	delivers	 less	 functionality	 earlier;	per	 the	policy	 that	80%
today	is	better	than	100%	tomorrow.

Cons Product	may	lose	its	competitive	edge	because	of	insufficient
core	functionality	and	may	exhibit	poor	overall	quality.

Rapid	application	development	(RAD)

Pros
Promotes	strong	collaborative	atmosphere	and	dynamic
gathering	of	requirements.	Business	owner	actively	participates
in	prototyping,	writing	test	cases	and	performing	unit	testing.

Cons

Dependence	on	strong	cohesive	teams	and	individual
commitment	to	the	project.	Decision	making	relies	on	the
feature	functionality	team	and	a	communal	decision-making
process	with	lesser	degree	of	centralized	PM	and	engineering
authority.

Scrum

Pros

Improved	productivity	in	teams	previously	paralyzed	by	heavy
“process”,	ability	to	prioritize	work,	use	of	backlog	for
completing	items	in	a	series	of	short	iterations	or	sprints,	daily
measured	progress	and	communications.

Cons

Reliance	on	facilitation	by	a	master	who	may	lack	the	political
skills	to	remove	impediments	and	deliver	the	sprint	goal.	Due
to	relying	on	self-organizing	teams	and	rejecting	traditional

www.manaraa.com

centralized	"process	control",	internal	power	struggles	can
paralyze	a	team.

Table	1:	Pros	and	Cons	of	various	RAD	types

Since	rapid	application	development	is	an	iterative	and	incremental	process,	it	can	lead	to	a	succession	of	prototypes	that	never	culminate	in	a	satisfactory	production	application.	Such
failures	may	be	avoided	if	the	application	development	tools	are	robust,	flexible,	and	put	to	proper	use.	This	is	addressed	in	methods	such	as	the	2080	Development	method	or	other	post-
agile	variants.

When	organizations	adopt	rapid	development	methodologies,	care	must	be	taken	to	avoid	role	and	responsibility	confusion	and	communication	breakdown	within	a	development	team,	and
between	team	and	client.	 In	addition,	especially	 in	cases	where	the	client	 is	absent	or	not	able	to	participate	with	authority	 in	the	development	process,	the	system	analyst	should	be
endowed	with	 this	 authority	on	behalf	 of	 the	 client	 to	 ensure	appropriate	prioritisation	of	non-functional	 requirements.	Furthermore,	no	 increment	of	 the	 system	 should	be	developed
without	a	thorough	and	formally	documented	design	phase.[6]

1.	 Whitten,	Jeffrey	L.;	Lonnie	D.	Bentley,	Kevin	C.	Dittman.	(2004).	Systems	Analysis	and	Design	Methods.	6th	edition.	
2.	 Maurer	and	S.	Martel.	(2002).	"Extreme	Programming:	Rapid	Development	for	Web-Based	Applications".	IEEE	Internet	Computing,	6(1)	pp	86-91	January/February	2002.
3.	 Andrew	Begel,	Nachiappan	Nagappan.	"Usage	and	Perceptions	of	Agile	Software	Development	in	an	Industrial	Context:	An	Exploratory	Study,	
http://research.microsoft.com/pubs/56015/AgileDevatMS-ESEM07.pdf.	Retrieved	2008-11-15.

4.	 E.	M.	Maximilien	and	L.	Williams.	(2003).	"Assessing	Test-driven	Development	at	IBM".	Proceedings	of	International	Conference	of	Software	Engineering,	Portland,	OR,	pp.	564-569,
2003.

5.	 M.	Stephens,	Rosenberg,	D.	(2003).	"Extreme	Programming	Refactored:	The	Case	Against	XP".	Apress,	2003.
6.	 Gerber,	Aurona;	Van	der	Merwe,	Alta;	Alberts,	Ronell;	(2007),	Implications	of	Rapid	Development	Methodologies,	CSITEd	2007,	Mauritius,	November	2007	
za/~agerber/publications.html)

Steve	McConnell	(1996).	Rapid	Development:	Taming	Wild	Software	Schedules,	Microsoft	Press	Books,	ISBN	978-1556159008
Kerr,	James	M.;	Hunter,	Richard	(1993).	Inside	RAD:	How	to	Build	a	Fully-Functional	System	in	90	Days	or	Less
Ellen	Gottesdiener	(1995).	"RAD	Realities:	Beyond	the	Hype	to	How	RAD	Really	Works	(http://ebgconsulting.com/Pubs/Articles/RAD_Realities_Beyond_the_Hype_Gottesdiener.
pdf)"	Application	Development	Trends
Ken	Schwaber	(1996).	Agile	Project	Management	with	Scrum,	Microsoft	Press	Books,	ISBN	978-0735619937
Steve	McConnell	(2003).	Professional	Software	Development:	Shorter	Schedules,	Higher	Quality	Products,	More	Successful	Projects,	Enhanced	Careers
978-0321193674
Dean	Leffingwell	(2007).	Scaling	Software	Agility:	Best	Practices	for	Large	Enterprises,	Addison-Wesley	Professional,	

Extreme	Programming	 (XP)	 is	 a	 software	 development	 methodology	 which	 is	 intended	 to	 improve	 software	 quality	 and	 responsiveness	 to	 changing
customer	 requirements.	As	 a	 type	 of	 agile	 software	development,[1][2][3]	 it	 advocates	 frequent	 "releases"	 in	 short	 development	 cycles	 (timeboxing),	which	 is
intended	to	improve	productivity	and	introduce	checkpoints	where	new	customer	requirements	can	be	adopted.

Other	 elements	 of	 extreme	 programming	 include:	 programming	 in	 pairs	 or	 doing	 extensive	 code	 review,	 unit	 testing	 of	 all	 code,	 avoiding	 programming	 of
features	until	they	are	actually	needed,	a	flat	management	structure,	simplicity	and	clarity	in	code,	expecting	changes	in	the	customer's	requirements	as	time
passes	and	the	problem	is	better	understood,	and	frequent	communication	with	the	customer	and	among	programmers.
from	the	idea	that	the	beneficial	elements	of	traditional	software	engineering	practices	are	taken	to	"extreme"	levels,	on	the	theory	that	if	some	is	good,	more	is
better.	It	is	unrelated	to	"cowboy	coding",	which	is	more	free-form	and	unplanned.	It	does	not	advocate	"death	march"	work	schedules,	but	instead	working	at	a
sustainable	pace.[5]

Critics	have	noted	several	potential	drawbacks,[6]	including	problems	with	unstable	requirements,	no	documented	compromises	of	user	conflicts,	and	a	lack	of
an	overall	design	specification	or	document.

Extreme	Programming	was	created	by	Kent	Beck	during	his	work	on	the	Chrysler	Comprehensive	Compensation	System	(C3)	payroll	project.
March	1996	and	began	 to	 refine	 the	development	method	used	 in	 the	project	and	wrote	a	book	on	 the	method	 (in	October	1999,	
Chrysler	cancelled	the	C3	project	in	February	2000,	after	the	company	was	acquired	by	Daimler-Benz.[7]

Although	extreme	programming	 itself	 is	 relatively	new,	many	of	 its	practices	have	been	around	 for	some	time;	the	methodology,	after	all,	 takes	 "best	practices"	 to	extreme	 levels.	For
example,	the	"practice	of	test-first	development,	planning	and	writing	tests	before	each	micro-increment"	was	used	as	early	as	NASA's	Project	Mercury,	in	the	early	1960s	
To	shorten	the	total	development	time,	some	formal	test	documents	(such	as	for	acceptance	testing)	have	been	developed	in	parallel	(or	shortly	before)	the	software	is	ready	for	testing.	A
NASA	independent	test	group	can	write	the	test	procedures,	based	on	formal	requirements	and	logical	limits,	before	the	software	has	been	written	and	integrated	with	the	hardware.	In

Criticism

Practical	implications

References

Further	reading

Extreme	Programming

History

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-105
http://research.microsoft.com/pubs/56015/AgileDevatMS-ESEM07.pdf
http://research.microsoft.com/pubs/56015/AgileDevatMS-ESEM07.pdf
http://ksg.meraka.org.za/~agerber/publications.html
https://en.wikibooks.org/wiki/Special:BookSources/978-1556159008
http://ebgconsulting.com/Pubs/Articles/RAD_Realities_Beyond_the_Hype_Gottesdiener.pdf
https://en.wikibooks.org/wiki/Special:BookSources/978-0735619937
https://en.wikibooks.org/wiki/Special:BookSources/978-0321193674
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Informatics85-106
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-UPenn49-107
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-USFCA601-108
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-tr-110
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Cworld92-111
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-112

www.manaraa.com

XP,	this	concept	 is	taken	to	the	extreme	level	by	writing	automated	tests	(perhaps	 inside	of	software	modules)	which	validate	the	operation	of	even	small	sections	of	software	coding,
rather	than	only	testing	the	larger	features.	Some	other	XP	practices,	such	as	refactoring,	modularity,	bottom-up	design,	and	incremental	design	were	described	by	Leo	Brodie	in	his	book
published	in	1984.[8]

Software	development	in	the	1990s	was	shaped	by	two	major	influences:	internally,	object-oriented	programming	replaced	procedural	programming	as	the	programming	paradigm	favored
by	some	in	the	industry;	externally,	the	rise	of	the	Internet	and	the	dot-com	boom	emphasized	speed-to-market	and	company-growth	as	competitive	business	factors.	Rapidly-changing
requirements	demanded	shorter	product	life-cycles,	and	were	often	incompatible	with	traditional	methods	of	software	development.

The	Chrysler	Comprehensive	Compensation	System	was	 started	 in	order	 to	determine	 the	best	way	 to	use	object	 technologies,	using	 the	payroll	 systems	at	Chrysler	 as	 the	object	 of
research,	with	Smalltalk	as	 the	 language	and	GemStone	as	the	data	access	 layer.	They	brought	 in	Kent	Beck,[6]
system,	but	his	role	expanded	as	he	noted	several	problems	they	were	having	with	their	development	process.	He	took	this	opportunity	to	propose	and	implement	some	changes	in	their
practices	based	on	his	work	with	his	frequent	collaborator,	Ward	Cunningham.	Beck	describes	the	early	conception	of	the	methods:

The	first	time	I	was	asked	to	lead	a	team,	I	asked	them	to	do	a	little	bit	of	the	things	I	thought	were	sensible,	like	testing	and	reviews.	The	second	time	there	was	a	lot	more	on
the	line.	I	thought,	"Damn	the	torpedoes,	at	least	this	will	make	a	good	article,"	[and]	asked	the	team	to	crank	up	all	the	knobs	to	10	on	the	things	I	thought	were	essential	and
leave	out	everything	else.

Beck	invited	Ron	Jeffries	to	the	project	to	help	develop	and	refine	these	methods.	Jeffries	thereafter	acted	as	a	coach	to	instill	the	practices	as	habits	in	the	C3	team.

Information	 about	 the	 principles	 and	 practices	 behind	 XP	 was	 disseminated	 to	 the	 wider	 world	 through	 discussions	 on	 the	 original	 Wiki,	 Cunningham's	 WikiWikiWeb.	 Various
contributors	discussed	and	expanded	upon	the	ideas,	and	some	spin-off	methodologies	resulted	(see	agile	software	development).	Also,	XP	concepts	have	been	explained,	for	several	years,
using	a	hypertext	system	map	on	the	XP	website	at	"http://www.extremeprogramming.org"	circa	1999.

Beck	 edited	 a	 series	 of	 books	 on	XP,	 beginning	with	 his	 own	Extreme	Programming	Explained	 (1999,	 ISBN	0-201-61641-6
audience.	Authors	in	the	series	went	through	various	aspects	attending	XP	and	its	practices.	Even	a	book	was	written,	critical	of	the	practices.

XP	created	quite	a	buzz	in	the	late	1990s	and	early	2000s,	seeing	adoption	in	a	number	of	environments	radically	different	from	its	origins.

The	high	discipline	required	by	the	original	practices	often	went	by	the	wayside,	causing	some	of	these	practices,	such	as	those	thought	too	rigid,	to	be	deprecated	or	reduced,	or	even	left
unfinished,	 on	 individual	 sites.	 For	 example,	 the	 practice	 of	 end-of-day	 integration	 tests,	 for	 a	 particular	 project,	 could	 be	 changed	 to	 an	 end-of-week	 schedule,	 or	 simply	 reduced	 to
mutually	agreed	dates.	Such	a	more	relaxed	schedule	could	avoid	people	feeling	rushed	to	generate	artificial	stubs	just	to	pass	the	end-of-day	testing.	A	less	rigid	schedule	allows,	instead,
for	some	complex	features	to	be	more	fully	developed	over	a	several-day	period.	However,	some	level	of	periodic	integration	testing	can	detect	groups	of	people	working	in	non-compatible,
tangent	efforts	before	too	much	work	is	invested	in	divergent,	wrong	directions.

Meanwhile,	other	agile	development	practices	have	not	stood	still,	and	XP	is	still	evolving,	assimilating	more	lessons	from	experiences	in	the	field,	to	use	other	practices.	In	the	second
edition	of	Extreme	Programming	Explained,	Beck	added	more	values	and	practices	and	differentiated	between	primary	and	corollary	practices.

Extreme	Programming	Explained	describes	Extreme	Programming	as	a	software	development	discipline	that	organizes	people	to	produce	higher	quality	software	more	productively.

In	traditional	system	development	methods	(such	as	SSADM	or	the	waterfall	model)	the	requirements	for	the	system	are	determined	at	the	beginning	of	the	development	project	and	often
fixed	from	that	point	on.	This	means	that	the	cost	of	changing	the	requirements	at	a	later	stage	(a	common	feature	of	software	engineering	projects
other	agile	software	development	methods,	XP	attempts	to	reduce	the	cost	of	change	by	having	multiple	short	development	cycles,	rather	than	one	long	one.	In	this	doctrine	changes	are	a
natural,	inescapable	and	desirable	aspect	of	software	development	projects,	and	should	be	planned	for	instead	of	attempting	to	define	a	stable	set	of	requirements.

Extreme	programming	also	introduces	a	number	of	basic	values,	principles	and	practices	on	top	of	the	agile	programming	framework.

XP	describes	four	basic	activities	that	are	performed	within	the	software	development	process:	coding,	testing,	listening,	and	designing.	Each	of	those	activities	is	described	below.

The	advocates	of	XP	argue	that	the	only	truly	important	product	of	the	system	development	process	is	code	-	software	instructions	a	computer	can	interpret.	Without	code,	there	is	no
working	product.

Coding	can	also	be	used	to	figure	out	the	most	suitable	solution.	Coding	can	also	help	to	communicate	thoughts	about	programming	problems.	A	programmer	dealing	with	a	complex
programming	problem	and	finding	it	hard	to	explain	the	solution	to	fellow	programmers	might	code	it	and	use	the	code	to	demonstrate	what	he	or	she	means.	Code,	say	the	proponents	of
this	position,	is	always	clear	and	concise	and	cannot	be	interpreted	in	more	than	one	way.	Other	programmers	can	give	feedback	on	this	code	by	also	coding	their	thoughts.

One	can	not	be	certain	that	a	function	works	unless	one	tests	it.	Bugs	and	design	errors	are	pervasive	problems	in	software	development.	Extreme	programming's	approach	is	that	if	a	little
testing	can	eliminate	a	few	flaws,	a	lot	of	testing	can	eliminate	many	more	flaws.

Unit	tests	determine	whether	a	given	feature	works	as	intended.	A	programmer	writes	as	many	automated	tests	as	they	can	think	of	that	might	"break"	the	code;	if	all	tests	run
successfully,	then	the	coding	is	complete.	Every	piece	of	code	that	is	written	is	tested	before	moving	on	to	the	next	feature.
Acceptance	tests	verify	that	the	requirements	as	understood	by	the	programmers	satisfy	the	customer's	actual	requirements.	These	occur	in	the	exploration	phase	of	release	planning.

A	"testathon"	is	an	event	when	programmers	meet	to	do	collaborative	test	writing,	a	kind	of	brainstorming	relative	to	software	testing.

Programmers	must	listen	to	what	the	customers	need	the	system	to	do,	what	"business	 logic"	 is	needed.	They	must	understand	these	needs	well	enough	to	give	the	customer	feedback

Origins

Current	state

Concept

Goals

Activities

Coding

Testing

Listening

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-113
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Cworld92-111
http://www.extremeprogramming.org/
https://en.wikibooks.org/wiki/Special:BookSources/0-201-61641-6

www.manaraa.com

Programmers	must	listen	to	what	the	customers	need	the	system	to	do,	what	"business	 logic"	 is	needed.	They	must	understand	these	needs	well	enough	to	give	the	customer	feedback
about	the	technical	aspects	of	how	the	problem	might	be	solved,	or	cannot	be	solved.	Communication	between	the	customer	and	programmer	is	further	addressed	in	the	Planning	Game.

From	the	point	of	view	of	simplicity,	of	course	one	could	say	that	system	development	doesn't	need	more	than	coding,	testing	and	listening.	If	those	activities	are	performed	well,	the	result
should	always	be	a	system	that	works.	In	practice,	this	will	not	work.	One	can	come	a	long	way	without	designing	but	at	a	given	time	one	will	get	stuck.	The	system	becomes	too	complex
and	 the	 dependencies	 within	 the	 system	 cease	 to	 be	 clear.	One	 can	 avoid	 this	 by	 creating	 a	 design	 structure	 that	 organizes	 the	 logic	 in	 the	 system.	Good	 design	will	 avoid	 lots	 of
dependencies	within	a	system;	this	means	that	changing	one	part	of	the	system	will	not	affect	other	parts	of	the	system.

Extreme	Programming	initially	recognized	four	values	in	1999.	A	new	value	was	added	in	the	second	edition	of	Extreme	Programming	Explained

Building	software	systems	requires	communicating	system	requirements	to	the	developers	of	the	system.	In	formal	software	development	methodologies,	this	task	is	accomplished	through
documentation.	Extreme	programming	techniques	can	be	viewed	as	methods	for	rapidly	building	and	disseminating	institutional	knowledge	among	members	of	a	development	team.	The
goal	 is	 to	give	all	developers	a	shared	view	of	the	system	which	matches	the	view	held	by	the	users	of	 the	system.	To	this	end,	extreme	programming	 favors	simple	designs,	common
metaphors,	collaboration	of	users	and	programmers,	frequent	verbal	communication,	and	feedback.

Extreme	Programming	encourages	starting	with	the	simplest	solution.	Extra	functionality	can	then	be	added	later.	The	difference	between	this	approach	and	more	conventional	system
development	methods	is	the	focus	on	designing	and	coding	for	the	needs	of	today	instead	of	those	of	tomorrow,	next	week,	or	next	month.	This	is	sometimes	summed	up	as	the	"you	ain't
gonna	need	it"	(YAGNI)	approach.[5]	Proponents	of	XP	acknowledge	the	disadvantage	that	this	can	sometimes	entail	more	effort	tomorrow	to	change	the	system;	their	claim	is	that	this	is
more	than	compensated	for	by	the	advantage	of	not	investing	in	possible	future	requirements	that	might	change	before	they	become	relevant.	Coding	and	designing	for	uncertain	future
requirements	 implies	the	risk	of	spending	resources	on	something	that	might	not	be	needed.	Related	to	the	"communication"	value,	simplicity	 in	design	and	coding	should	improve	the
quality	of	communication.	A	simple	design	with	very	simple	code	could	be	easily	understood	by	most	programmers	in	the	team.

Within	extreme	programming,	feedback	relates	to	different	dimensions	of	the	system	development:

Feedback	from	the	system:	by	writing	unit	tests,[6]	or	running	periodic	integration	tests,	the	programmers	have	direct	feedback	from	the	state	of	the	system	after	implementing
changes.
Feedback	from	the	customer:	The	functional	tests	(aka	acceptance	tests)	are	written	by	the	customer	and	the	testers.	They	will	get	concrete	feedback	about	the	current	state	of	their
system.	This	review	is	planned	once	in	every	two	or	three	weeks	so	the	customer	can	easily	steer	the	development.
Feedback	from	the	team:	When	customers	come	up	with	new	requirements	in	the	planning	game	the	team	directly	gives	an	estimation	of	the	time	that	it	will	take	to	implement.

Feedback	is	closely	related	to	communication	and	simplicity.	Flaws	in	the	system	are	easily	communicated	by	writing	a	unit	test	that	proves	a	certain	piece	of	code	will	break.	The	direct
feedback	from	the	system	tells	programmers	to	recode	this	part.	A	customer	is	able	to	test	the	system	periodically	according	to	the	functional	requirements,	known	as	
quote	Kent	Beck,	"Optimism	is	an	occupational	hazard	of	programming,	feedback	is	the	treatment."[citation	needed]

Several	practices	embody	courage.	One	is	the	commandment	to	always	design	and	code	for	today	and	not	 for	tomorrow.	This	 is	an	effort	to	avoid	getting	bogged	down	in	design	and
requiring	a	lot	of	effort	to	implement	anything	else.	Courage	enables	developers	to	feel	comfortable	with	refactoring	their	code	when	necessary.
and	modifying	it	so	that	future	changes	can	be	implemented	more	easily.	Another	example	of	courage	is	knowing	when	to	throw	code	away:	courage	to	remove	source	code	that	is	obsolete,
no	matter	how	much	effort	was	used	to	create	that	source	code.	Also,	courage	means	persistence:	A	programmer	might	be	stuck	on	a	complex	problem	for	an	entire	day,	then	solve	the
problem	quickly	the	next	day,	if	only	they	are	persistent.

The	respect	value	includes	respect	for	others	as	well	as	self-respect.	Programmers	should	never	commit	changes	that	break	compilation,	that	make	existing	unit-tests	fail,	or	that	otherwise
delay	the	work	of	their	peers.	Members	respect	their	own	work	by	always	striving	for	high	quality	and	seeking	for	the	best	design	for	the	solution	at	hand	through	refactoring.

Adopting	the	four	earlier	values	leads	to	respect	gained	from	others	in	the	team.	Nobody	on	the	team	should	feel	unappreciated	or	ignored.	This	ensures	a	high	level	of	motivation	and
encourages	loyalty	toward	the	team	and	toward	the	goal	of	the	project.	This	value	is	very	dependent	upon	the	other	values,	and	is	very	much	oriented	toward	people	in	a	team.

The	first	version	of	rules	for	XP	was	published	in	1999	by	Don	Wells[10]	at	the	XP	website.	29	rules	are	given	in	the	categories	of	planning,	managing,	designing,	coding,	and	testing.
Planning,	managing	and	designing	are	called	out	explicitly	to	counter	claims	that	XP	doesn't	support	those	activities.

Another	version	of	XP	rules	was	proposed	by	Ken	Auer[11]	in	XP/Agile	Universe	2003.	He	felt	XP	was	defined	by	its	rules,	not	its	practices	(which	are	subject	to	more	variation	and
ambiguity).	He	defined	two	categories:	"Rules	of	Engagement"	which	dictate	the	environment	in	which	software	development	can	take	place	effectively,	and	"Rules	of	Play"	which	define
the	minute-by-minute	activities	and	rules	within	the	framework	of	the	Rules	of	Engagement.

The	principles	that	form	the	basis	of	XP	are	based	on	the	values	just	described	and	are	intended	to	foster	decisions	in	a	system	development	project.	The	principles	are	intended	to	be
more	concrete	than	the	values	and	more	easily	translated	to	guidance	in	a	practical	situation.

Extreme	programming	sees	feedback	as	most	useful	if	it	is	done	rapidly	and	expresses	that	the	time	between	an	action	and	its	feedback	is	critical	to	learning	and	making	changes.	Unlike
traditional	system	development	methods,	contact	with	the	customer	occurs	in	more	frequent	iterations.	The	customer	has	clear	insight	into	the	system	that	is	being	developed.	He	or	she
can	give	feedback	and	steer	the	development	as	needed.

Unit	tests	also	contribute	to	the	rapid	 feedback	principle.	When	writing	code,	 the	unit	test	provides	direct	 feedback	as	to	how	the	system	reacts	to	the	changes	one	has	made.	 If,	 for
instance,	the	changes	affect	a	part	of	the	system	that	is	not	in	the	scope	of	the	programmer	who	made	them,	that	programmer	will	not	notice	the	flaw.	There	is	a	large	chance	that	this
bug	will	appear	when	the	system	is	in	production.

Designing

Values

Communication

Simplicity

Feedback

Courage

Respect

Rules

Principles

Feedback

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-tr-110
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Cworld92-111
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-115
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-116

www.manaraa.com

This	is	about	treating	every	problem	as	if	its	solution	were	"extremely	simple".	Traditional	system	development	methods	say	to	plan	for	the	future	and	to	code	for	reusability.	Extreme
programming	rejects	these	ideas.

The	advocates	of	extreme	programming	say	that	making	big	changes	all	at	once	does	not	work.	Extreme	programming	applies	incremental	changes:	for	example,	a	system	might	have	small
releases	every	three	weeks.	When	many	little	steps	are	made,	the	customer	has	more	control	over	the	development	process	and	the	system	that	is	being	developed.

The	principle	of	embracing	change	is	about	not	working	against	changes	but	embracing	them.	For	instance,	if	at	one	of	the	iterative	meetings	it	appears	that	the	customer's	requirements
have	changed	dramatically,	programmers	are	to	embrace	this	and	plan	the	new	requirements	for	the	next	iteration.

Extreme	programming	has	been	described	as	having	12	practices,	grouped	into	four	areas:

Pair	programming[6]

Planning	game
Test-driven	development
Whole	team

Continuous	integration
Refactoring	or	design	improvement[6]

Small	releases

Coding	standards
Collective	code	ownership[6]

Simple	design[6]

System	metaphor

Sustainable	pace

The	customer	is	always	available
Code	the	Unit	test	first
Only	one	pair	integrates	code	at	a	time
Leave	Optimization	till	last
No	Overtime

All	code	must	have	Unit	tests
All	code	must	pass	all	Unit	tests	before	it	can	be	released.
When	a	Bug	is	found	tests	are	created	before	the	bug	is	addressed	(a	bug	is	not	an	error	in	logic,	it	is	a	test	you	forgot	to	write)
Acceptance	tests	are	run	often	and	the	results	are	published

The	practices	 in	XP	have	been	heavily	debated.[6]	Proponents	of	 extreme	programming	claim	 that	by	having	 the	on-site	 customer
flexible,	and	saves	the	cost	of	formal	overhead.	Critics	of	XP	claim	this	can	lead	to	costly	rework	and	project	scope	creep	beyond	what	was	previously	agreed	or	funded.

Change	control	boards	are	a	sign	that	there	are	potential	conflicts	in	project	objectives	and	constraints	between	multiple	users.	XP's	expedited	methodology	is	somewhat	dependent	on
programmers	being	able	to	assume	a	unified	client	viewpoint	so	the	programmer	can	concentrate	on	coding	rather	than	documentation	of	compromise	objectives	and	constraints.	This	also
applies	when	multiple	programming	organizations	are	involved,	particularly	organizations	which	compete	for	shares	of	projects.

Other	potentially	controversial	aspects	of	extreme	programming	include:

Assuming	simplicity

Embracing	change

Practices

Fine	scale	feedback

Continuous	process

Shared	understanding

Programmer	welfare

Coding

Testing

Controversial	aspects

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Cworld92-111
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Cworld92-111
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Cworld92-111
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Cworld92-111
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Cworld92-111

www.manaraa.com

Requirements	are	expressed	as	automated	acceptance	tests	rather	than	specification	documents.
Requirements	are	defined	incrementally,	rather	than	trying	to	get	them	all	in	advance.
Software	developers	are	usually	required	to	work	in	pairs.
There	is	no	Big	Design	Up	Front.	Most	of	the	design	activity	takes	place	on	the	fly	and	incrementally,	starting	with	
complexity	only	when	it's	required	by	failing	tests.	Critics	compare	this	to	"debugging	a	system	into	appearance"	and	fear	this	will	result	in	more	re-design	effort	than	only	re-designing
when	requirements	change.
A	customer	representative	is	attached	to	the	project.	This	role	can	become	a	single-point-of-failure	for	the	project,	and	some	people	have	found	it	to	be	a	source	of	stress.	Also,	there	is
the	danger	of	micro-management	by	a	non-technical	representative	trying	to	dictate	the	use	of	technical	software	features	and	architecture.
Dependence	upon	all	other	aspects	of	XP:	"XP	is	like	a	ring	of	poisonous	snakes,	daisy-chained	together.	All	it	takes	is	for	one	of	them	to	wriggle	loose,	and	you've	got	a	very	angry,
poisonous	snake	heading	your	way."[12]

Historically,	XP	only	works	on	teams	of	twelve	or	fewer	people.	One	way	to	circumvent	this	limitation	is	to	break	up	the	project	into	smaller	pieces	and	the	team	into	smaller	groups.	It
has	been	claimed	that	XP	has	been	used	successfully	on	teams	of	over	a	hundred	developers[citation	needed].	ThoughtWorks	has	claimed	reasonable	success	on	distributed	XP	projects
with	up	to	sixty	people[citation	needed].

In	2004	Industrial	Extreme	Programming	(IXP)[13]	was	introduced	as	an	evolution	of	XP.	It	is	intended	to	bring	the	ability	to	work	in	large	and	distributed	teams.	It	now	has	23	practices
and	flexible	values.	As	it	is	a	new	member	of	the	Agile	family,	there	is	not	enough	data	to	prove	its	usability,	however	it	claims	to	be	an	answer	to	what	it	sees	as	XP's	imperfections.

In	2003,	Matt	Stephens	and	Doug	Rosenberg	published	Extreme	Programming	Refactored:	The	Case	Against	XP
which	 it	 could	 be	 improved.	 This	 triggered	 a	 lengthy	 debate	 in	 articles,	 internet	 newsgroups,	 and	 web-site	 chat	 areas.	 The	 core	 argument	 of	 the	 book	 is	 that	 XP's	 practices	 are
interdependent	but	 that	 few	practical	 organizations	 are	willing/able	 to	 adopt	 all	 the	practices;	 therefore	 the	 entire	process	 fails.	The	book	also	makes	 other	 criticisms	and	 it	draws	a
likeness	of	XP's	"collective	ownership"	model	to	socialism	in	a	negative	manner.

Certain	aspects	of	XP	have	changed	since	the	book	Extreme	Programming	Refactored	(2003)	was	published;	in	particular,	XP	now	accommodates	modifications	to	the	practices	as	long	as
the	required	objectives	are	still	met.	XP	also	uses	increasingly	generic	terms	for	processes.	Some	argue	that	these	changes	invalidate	previous	criticisms;	others	claim	that	this	is	simply
watering	the	process	down.

RDP	Practice	is	a	technique	for	tailoring	extreme	programming.	This	practice	was	initially	proposed	as	a	long	research	paper	in	a	workshop	organized	by	Philippe	Kruchten	and	Steve
Adolph(See	APSO	workshop	(http://www.lero.ie/apso08/introduction.html)	at	ICSE	2008	(http://icse08.upb.de/))	and	yet	it	is	the	only	proposed	and	applicable	method	for	customizing
XP.	The	valuable	concepts	behind	RDP	practice,	in	a	short	time	provided	the	rationale	for	applicability	of	it	in	industries.	RDP	Practice	tries	to	customize	XP	by	relying	on	technique	XP
Rules.

Other	authors	have	tried	to	reconcile	XP	with	the	older	methods	in	order	to	form	a	unified	methodology.	Some	of	these	XP	sought	to	replace,	such	as	the	waterfall	method;	example:
Project	Lifecycles:	Waterfall,	Rapid	Application	Development,	and	All	That	(http://www.lux-seattle.com/resources/whitepapers/waterfall.htm)
XP	with	 the	 computer	programming	methodologies	of	Capability	Maturity	Model	 Integration	 (CMMI),	and	Six	Sigma.	They	 found	 that	 the	 three	 systems	 reinforced	each	other	well,
leading	to	better	development,	and	did	not	mutually	contradict.[14]

Extreme	 programming's	 initial	 buzz	 and	 controversial	 tenets,	 such	 as	 pair	 programming	 and	 continuous	 design,	 have	 attracted	 particular	 criticisms,	 such	 as	 the	 ones	 coming	 from
McBreen[15]	and	Boehm	and	Turner.[16]	Many	of	the	criticisms,	however,	are	believed	by	Agile	practitioners	to	be	misunderstandings	of	agile	development.

In	particular,	extreme	programming	is	reviewed	and	critiqued	by	Matt	Stephens's	and	Doug	Rosenberg's	Extreme	Programming	Refactored

Criticisms	include:

A	methodology	is	only	as	effective	as	the	people	involved,	Agile	does	not	solve	this
Often	used	as	a	means	to	bleed	money	from	customers	through	lack	of	defining	a	deliverable
Lack	of	structure	and	necessary	documentation
Only	works	with	senior-level	developers
Incorporates	insufficient	software	design
Requires	meetings	at	frequent	intervals	at	enormous	expense	to	customers
Requires	too	much	cultural	change	to	adopt
Can	lead	to	more	difficult	contractual	negotiations
Can	be	very	inefficient—if	the	requirements	for	one	area	of	code	change	through	various	iterations,	the	same	programming	may	need	to	be	done	several	times	over.	Whereas	if	a	plan
were	there	to	be	followed,	a	single	area	of	code	is	expected	to	be	written	once.
Impossible	to	develop	realistic	estimates	of	work	effort	needed	to	provide	a	quote,	because	at	the	beginning	of	the	project	no	one	knows	the	entire	scope/requirements
Can	increase	the	risk	of	scope	creep	due	to	the	lack	of	detailed	requirements	documentation
Agile	is	feature	driven;	non-functional	quality	attributes	are	hard	to	be	placed	as	user	stories

Scalability

Severability	and	responses

Criticism

References

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-117
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-118
http://www.lero.ie/apso08/introduction.html
http://icse08.upb.de/
http://www.lux-seattle.com/resources/whitepapers/waterfall.htm
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-119
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-mcbreen-120
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-boehm2004-121

www.manaraa.com

1.	 "Human	Centred	Technology	Workshop	2005",	2005,	PDF	webpage:	Informatics-UK-report-cdrp585	(ftp://ftp.informatics.sussex.ac.uk/pub/reports/csrp/csrp585.pdf)
2.	 "Design	Patterns	and	Refactoring",	University	of	Pennsylvania,	2003,	webpage:	UPenn-Lectures-design-patterns	(http://www.cis.upenn.edu/~matuszek/cit591-2003/Lectures/49-design-
patterns.ppt).

3.	 "Extreme	Programming"	(lecture	paper),	USFCA.edu,	webpage:	USFCA-edu-601-lecture	(http://www.cs.usfca.edu/~parrt/course/601/lectures/xp.html)
4.	 "Manifesto	for	Agile	Software	Development",	Agile	Alliance,	2001,	webpage:	Manifesto-for-Agile-Software-Dev	(http://agilemanifesto.org/)
5.	 "Everyone's	a	Programmer"	by	Clair	Tristram.	Technology	Review,	Nov	2003.	p.	39
6.	 "Extreme	Programming",	Computerworld	(online),	December	2001,	webpage:	Computerworld-appdev-92	(http://www.computerworld.com/softwaretopics/software/appdev/story/0,1080
1,66192,00.html).

7.	 Extreme	Programming	Refactored:	The	Case	Against	XP.	ISBN	1590590961.
8.	 Brodie,	Leo	(1984)	(paperback).	Thinking	Forth.	Prentice-Hall.	ISBN	0-13-917568-7.	http://thinking-forth.sourceforge.net
9.	 Interview	with	Kent	Beck	and	Martin	Fowler	(http://www.informit.com/articles/article.aspx?p=20972)
10.	 Don	Wells	(http://www.extremeprogramming.org/rules.html)
11.	 Ken	Auer	(http://www.rolemodelsoftware.com/moreAboutUs/publications/rulesOfXp.php)
12.	 The	Case	Against	Extreme	Programming:	A	Self-Referential	Safety	Net	(http://www.softwarereality.com/lifecycle/xp/safety_net.jsp)
13.	 Cutter	Consortium	::	Industrial	XP:	Making	XP	Work	in	Large	Organizations	(http://www.cutter.com/content-and-analysis/resource-centers/agile-project-management/sample-our-res

earch/apmr0502.html)
14.	 Extreme	Programming	(XP)	Six	Sigma	CMMI	(http://www.sei.cmu.edu/library/assets/jarvis-gristock.pdf).
15.	 McBreen,	P.	(2003).	Questioning	Extreme	Programming.	Boston,	MA:	Addison-Wesley.	ISBN	0-201-84457-5.
16.	 Boehm,	B.;	R.	Turner	(2004).	Balancing	Agility	and	Discipline:	A	Guide	for	the	Perplexed.	Boston,	MA:	Addison-Wesley.	
17.	 sdmagazine	(http://www.sdmagazine.com/documents/s=1811/sdm0112h/0112h.htm)
18.	 Extreme	Programming	Refactored	(http://www.softwarereality.com/ExtremeProgrammingRefactored.jsp),	Matt	Stephens	and	Doug	Rosenberg,	Publisher:	Apress	L.P.

Ken	Auer	and	Roy	Miller.	Extreme	Programming	Applied:	Playing	To	Win,	Addison-Wesley.
Kent	Beck:	Extreme	Programming	Explained:	Embrace	Change,	Addison-Wesley.
Kent	Beck	and	Martin	Fowler:	Planning	Extreme	Programming,	Addison-Wesley.
Kent	Beck	and	Cynthia	Andres.	Extreme	Programming	Explained:	Embrace	Change,	Second	Edition,	Addison-Wesley.
Alistair	Cockburn:	Agile	Software	Development,	Addison-Wesley.
Martin	Fowler:	Refactoring:	Improving	the	Design	of	Existing	Code,	Addison-Wesley.
Harvey	Herela	(2005).	Case	Study:	The	Chrysler	Comprehensive	Compensation	System	(http://calla.ics.uci.edu/histories/ccc/)
Jim	Highsmith.	Agile	Software	Development	Ecosystems,	Addison-Wesley.
Ron	Jeffries,	Ann	Anderson	and	Chet	Hendrickson	(2000),	Extreme	Programming	Installed,	Addison-Wesley.
Mehdi	Mirakhorli	(2008).	RDP	technique:	a	practice	to	customize	xp,	International	Conference	on	Software	Engineering,	Proceedings	of	the	2008	international	workshop	on	Scrutinizing
agile	practices	or	shoot-out	at	the	agile	corral,	Leipzig,	Germany	2008,	Pages	23–32.
Craig	Larman	&	V.	Basili	(2003).	"Iterative	and	Incremental	Development:	A	Brief	History",	Computer	(IEEE	Computer	Society)	36	(6):	47-56.
Matt	Stephens	and	Doug	Rosenberg	(2003).	Extreme	Programming	Refactored:	The	Case	Against	XP,	Apress.
Waldner,	JB.	(2008).	"Nanocomputers	and	Swarm	Intelligence".	In:	ISTE,	225-256.

Extreme	Programming
A	gentle	introduction	(http://www.extremeprogramming.org)
Industrial	eXtreme	Programming	(http://www.IndustrialXP.org/)
XP	magazine	(http://www.xprogramming.com)
Problems	and	Solutions	to	XP	implementation	(http://c2.com/cgi/wiki?ExtremeProgrammingImplementationIssues)
Using	an	Agile	Software	Process	with	Offshore	Development	(http://www.martinfowler.com/articles/agileOffshore.html)
distributed	projects

Planning

Further	reading

External	links

ftp://ftp.informatics.sussex.ac.uk/pub/reports/csrp/csrp585.pdf
http://www.cis.upenn.edu/~matuszek/cit591-2003/Lectures/49-design-patterns.ppt
http://www.cs.usfca.edu/~parrt/course/601/lectures/xp.html
http://agilemanifesto.org/
http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,66192,00.html
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/1590590961
http://thinking-forth.sourceforge.net/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-13-917568-7
http://thinking-forth.sourceforge.net/
http://www.informit.com/articles/article.aspx?p=20972
http://www.extremeprogramming.org/rules.html
http://www.rolemodelsoftware.com/moreAboutUs/publications/rulesOfXp.php
http://www.softwarereality.com/lifecycle/xp/safety_net.jsp
http://www.cutter.com/content-and-analysis/resource-centers/agile-project-management/sample-our-research/apmr0502.html
http://www.sei.cmu.edu/library/assets/jarvis-gristock.pdf
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-201-84457-5
https://en.wikipedia.org/wiki/Barry_Boehm
http://www.sdmagazine.com/documents/s=1811/sdm0112h/0112h.htm
http://www.softwarereality.com/ExtremeProgrammingRefactored.jsp
http://calla.ics.uci.edu/histories/ccc/
http://c2.com/cgi/wiki?ExtremeProgramming
http://www.extremeprogramming.org/
http://www.industrialxp.org/
http://www.xprogramming.com/
http://c2.com/cgi/wiki?ExtremeProgrammingImplementationIssues
http://www.martinfowler.com/articles/agileOffshore.html

www.manaraa.com

Requirements	analysis	in	systems	engineering	and	software	engineering,	encompasses	those	tasks	that	go	into	determining	the	needs	or	conditions
to	meet	for	a	new	or	altered	product,	taking	account	of	the	possibly	conflicting	requirements	of	the	various	stakeholders,	such	as	beneficiaries	or	users.
Another	 requirement	 you	need	 to	 have	 to	 be	 a	 software	manager	 you	need	 to	 know	how	 to	 pleasure	 your	 boss.	But	 in	 financing	 you	 also	 need	 to
pleasure	your	boss.

Requirements	analysis	is	critical	to	the	success	of	a	development	project.[2]	Requirements	must	be	documented,	actionable,	measurable,	testable,	related
to	identified	business	needs	or	opportunities,	and	defined	to	a	level	of	detail	sufficient	for	system	design.	Requirements	can	be	architectural,	structural,
behavioral,	functional,	and	non-functional.

Conceptually,	requirements	analysis	includes	three	types	of	activity:

Eliciting	requirements:	the	task	of	communicating	with	customers	and	users	to	determine	what	their	requirements	are.	This	is	sometimes	also	called
requirements	gathering.
Analyzing	requirements:	determining	whether	the	stated	requirements	are	unclear,	incomplete,	ambiguous,	or	contradictory,	and	then	resolving	these
issues.
Recording	requirements:	Requirements	might	be	documented	in	various	forms,	such	as	natural-language	documents,	use	cases,	user	stories,	or
process	specifications.

Requirements	analysis	can	be	a	long	and	arduous	process	during	which	many	delicate	psychological	skills	are	involved.	New	systems	change	the	environment	and	relationships	between
people,	so	it	is	important	to	identify	all	the	stakeholders,	take	into	account	all	their	needs	and	ensure	they	understand	the	implications	of	the	new	systems.	Analysts	can	employ	several
techniques	to	elicit	the	requirements	from	the	customer.	Historically,	this	has	included	such	things	as	holding	interviews,	or	holding	focus	groups	(more	aptly	named	in	this	context	as
requirements	workshops)	and	creating	requirements	 lists.	More	modern	techniques	 include	prototyping,	and	use	cases.	Where	necessary,	the	analyst	will	employ	a	combination	of	these
methods	to	establish	the	exact	requirements	of	the	stakeholders,	so	that	a	system	that	meets	the	business	needs	is	produced.

Systematic	 requirements	 analysis	 is	 also	 known	 as	 requirements	 engineering.[3]	 It	 is	 sometimes	 referred	 to	 loosely	 by	 names	 such	 as	
requirements	 specification.	The	 term	 requirements	analysis	 can	 also	 be	 applied	 specifically	 to	 the	 analysis	 proper,	 as	 opposed	 to	 elicitation	 or	 documentation	 of	 the	 requirements,	 for
instance.	Requirements	Engineering	can	be	divided	into	discrete	chronological	steps:

Requirements	elicitation,
Requirements	analysis	and	negotiation,
Requirements	specification,
System	modeling,
Requirements	validation,
Requirements	management.

Requirement	engineering	according	 to	Laplante	 (2007)	 is	 "a	 subdiscipline	of	 systems	engineering	and	software	engineering	 that	 is	 concerned	with	determining	 the	goals,	 functions,	and
constraints	of	hardware	and	software	systems."[4]	In	some	life	cycle	models,	the	requirement	engineering	process	begins	with	a	feasibility	study	activity,	which	leads	to	a	feasibility	report.
If	the	feasibility	study	suggests	that	the	product	should	be	developed,	then	requirement	analysis	can	begin.	If	requirement	analysis	precedes	feasibility	studies,	which	may	foster	outside	the
box	thinking,	then	feasibility	should	be	determined	before	requirements	are	finalized.

See	Stakeholder	analysis	for	a	discussion	of	business	uses.	Stakeholders	(SH)	are	people	or	organizations	(legal	entities	such	as	companies,	standards	bodies)	which	have	a	valid	interest	in
the	system.	They	may	be	affected	by	it	either	directly	or	indirectly.	A	major	new	emphasis	in	the	1990s	was	a	focus	on	the	identification	of	
stakeholders	are	not	limited	to	the	organization	employing	the	analyst.	Other	stakeholders	will	include:

anyone	who	operates	the	system	(normal	and	maintenance	operators)
anyone	who	benefits	from	the	system	(functional,	political,	financial	and	social	beneficiaries)
anyone	involved	in	purchasing	or	procuring	the	system.	In	a	mass-market	product	organization,	product	management,	marketing	and	sometimes	sales	act	as	surrogate	consumers	(mass-
market	customers)	to	guide	development	of	the	product
organizations	which	regulate	aspects	of	the	system	(financial,	safety,	and	other	regulators)
people	or	organizations	opposed	to	the	system	(negative	stakeholders;	see	also	Misuse	case)
organizations	responsible	for	systems	which	interface	with	the	system	under	design
those	organizations	who	integrate	horizontally	with	the	organization	for	whom	the	analyst	is	designing	the	system

Stakeholder	interviews	are	a	common	technique	used	in	requirement	analysis.	Though	they	are	generally	idiosyncratic	in	nature	and	focused	upon	the	perspectives	and	perceived	needs	of
the	stakeholder,	very	often	without	larger	enterprise	or	system	context,	this	perspective	deficiency	has	the	general	advantage	of	obtaining	a	much	richer	understanding	of	the	stakeholder's
unique	business	processes,	decision-relevant	business	rules,	and	perceived	needs.	Consequently	this	technique	can	serve	as	a	means	of	obtaining	the	highly	focused	knowledge	that	is	often
not	elicited	in	Joint	Requirements	Development	sessions,	where	the	stakeholder's	attention	is	compelled	to	assume	a	more	cross-functional	context.	Moreover,	the	in-person	nature	of	the
interviews	provides	a	more	relaxed	environment	where	lines	of	thought	may	be	explored	at	length.

Requirements

Overview

Requirements	engineering

Requirements	analysis	topics

Stakeholder	identification

Stakeholder	interviews

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-125
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-126
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-PAL07-127

www.manaraa.com

Requirements	often	have	cross-functional	implications	that	are	unknown	to	individual	stakeholders	and	often	missed	or	incompletely	defined	during	stakeholder	interviews.	These	cross-
functional	implications	can	be	elicited	by	conducting	JRD	sessions	in	a	controlled	environment,	facilitated	by	a	trained	facilitator,	wherein	stakeholders	participate	in	discussions	to	elicit
requirements,	analyze	their	details	and	uncover	cross-functional	implications.	A	dedicated	scribe	and	Business	Analyst	should	be	present	to	document	the	discussion.	Utilizing	the	skills	of	a
trained	facilitator	to	guide	the	discussion	frees	the	Business	Analyst	to	focus	on	the	requirements	definition	process.

JRD	Sessions	are	analogous	to	Joint	Application	Design	Sessions.	In	the	former,	the	sessions	elicit	requirements	that	guide	design,	whereas	the	latter	elicit	the	specific	design	features	to	be
implemented	in	satisfaction	of	elicited	requirements.

One	traditional	way	of	documenting	requirements	has	been	contract	style	requirement	lists.	In	a	complex	system	such	requirements	lists	can	run	to	hundreds	of	pages.

An	appropriate	metaphor	would	be	an	extremely	long	shopping	list.	Such	lists	are	very	much	out	of	favour	in	modern	analysis;	as	they	have	proved	spectacularly	unsuccessful	at	achieving
their	aims;	but	they	are	still	seen	to	this	day.

Provides	a	checklist	of	requirements.
Provide	a	contract	between	the	project	sponsor(s)	and	developers.
For	a	large	system	can	provide	a	high	level	description.

Such	lists	can	run	to	hundreds	of	pages.	It	is	virtually	impossible	to	read	such	documents	as	a	whole	and	have	a	coherent	understanding	of	the	system.
Such	requirements	lists	abstract	all	the	requirements	and	so	there	is	little	context

This	abstraction	makes	it	impossible	to	see	how	the	requirements	fit	or	work	together.
This	abstraction	makes	it	difficult	to	prioritize	requirements	properly;	while	a	list	does	make	it	easy	to	prioritize	each	individual	item,	removing	one	item	out	of	context	can	render
an	entire	use	case	or	business	requirement	useless.
This	abstraction	increases	the	likelihood	of	misinterpreting	the	requirements;	as	more	people	read	them,	the	number	of	(different)	interpretations	of	the	envisioned	system	increase.
This	abstraction	means	that	it's	extremely	difficult	to	be	sure	that	you	have	the	majority	of	the	requirements.	Necessarily,	these	documents	speak	in	generality;	but	the	devil,	as
they	say,	is	in	the	details.

These	lists	create	a	false	sense	of	mutual	understanding	between	the	stakeholders	and	developers.
These	contract	style	lists	give	the	stakeholders	a	false	sense	of	security	that	the	developers	must	achieve	certain	things.	However,	due	to	the	nature	of	these	lists,	they	inevitably	miss
out	crucial	requirements	which	are	identified	later	in	the	process.	Developers	can	use	these	discovered	requirements	to	renegotiate	the	terms	and	conditions	in	their	favour.
These	requirements	lists	are	no	help	in	system	design,	since	they	do	not	lend	themselves	to	application.

As	an	alternative	to	the	large,	pre-defined	requirement	lists	Agile	Software	Development	uses	User	stories	to	define	a	requirement	in	every	day	language.

Best	practices	take	the	composed	list	of	requirements	merely	as	clues	and	repeatedly	ask	"why?"	until	the	actual	business	purposes	are	discovered.	Stakeholders	and	developers	can	then
devise	tests	to	measure	what	level	of	each	goal	has	been	achieved	thus	far.	Such	goals	change	more	slowly	than	the	long	list	of	specific	but	unmeasured	requirements.	Once	a	small	set	of
critical,	measured	goals	has	been	established,	rapid	prototyping	and	short	iterative	development	phases	may	proceed	to	deliver	actual	stakeholder	value	long	before	the	project	is	half	over.

In	 the	 mid-1980s,	 prototyping	 was	 seen	 as	 the	 best	 solution	 to	 the	 requirements	 analysis	 problem.	 Prototypes	 are	Mockups	 of	 an	 application.	Mockups	 allow	 users	 to	 visualize	 an
application	that	hasn't	yet	been	constructed.	Prototypes	help	users	get	an	idea	of	what	the	system	will	look	like,	and	make	it	easier	for	users	to	make	design	decisions	without	waiting	for
the	system	to	be	built.	Major	improvements	in	communication	between	users	and	developers	were	often	seen	with	the	introduction	of	prototypes.	Early	views	of	applications	led	to	fewer
changes	later	and	hence	reduced	overall	costs	considerably.

However,	over	the	next	decade,	while	proving	a	useful	technique,	prototyping	did	not	solve	the	requirements	problem:

Managers,	once	they	see	a	prototype,	may	have	a	hard	time	understanding	that	the	finished	design	will	not	be	produced	for	some	time.
Designers	often	feel	compelled	to	use	patched	together	prototype	code	in	the	real	system,	because	they	are	afraid	to	'waste	time'	starting	again.
Prototypes	principally	help	with	design	decisions	and	user	interface	design.	However,	they	can	not	tell	you	what	the	requirements	originally	were.
Designers	and	end-users	can	focus	too	much	on	user	interface	design	and	too	little	on	producing	a	system	that	serves	the	business	process.
Prototypes	work	well	for	user	interfaces,	screen	layout	and	screen	flow	but	are	not	so	useful	for	batch	or	asynchronous	processes	which	may	involve	complex	database	updates	and/or
calculations.

Prototypes	can	be	flat	diagrams	(often	referred	to	as	wireframes)	or	working	applications	using	synthesized	functionality.	Wireframes	are	made	in	a	variety	of	graphic	design	documents,
and	often	remove	all	color	from	the	design	(i.e.	use	a	greyscale	color	palette)	in	instances	where	the	final	software	is	expected	to	have	graphic	design	applied	to	it.	This	helps	to	prevent
confusion	over	the	final	visual	look	and	feel	of	the	application.

Joint	Requirements	Development	(JRD)	Sessions

Contract-style	requirement	lists

Strengths

Weaknesses

Alternative	to	requirement	lists

Measurable	goals

Prototypes

Use	cases

www.manaraa.com

A	use	case	is	a	technique	for	documenting	the	potential	requirements	of	a	new	system	or	software	change.	Each	use	case	provides	one	or	more	
interact	with	the	end-user	or	another	system	to	achieve	a	specific	business	goal.	Use	cases	typically	avoid	technical	jargon,	preferring	instead	the	language	of	the	end-user	or	
Use	cases	are	often	co-authored	by	requirements	engineers	and	stakeholders.

Use	cases	are	deceptively	simple	tools	for	describing	the	behavior	of	software	or	systems.	A	use	case	contains	a	textual	description	of	all	of	the	ways	which	the	intended	users	could	work
with	the	software	or	system.	Use	cases	do	not	describe	any	internal	workings	of	the	system,	nor	do	they	explain	how	that	system	will	be	implemented.	They	simply	show	the	steps	that	a
user	follows	to	perform	a	task.	All	the	ways	that	users	interact	with	a	system	can	be	described	in	this	manner.

A	software	requirements	specification	(SRS)	is	a	complete	description	of	the	behavior	of	the	system	to	be	developed.	It	includes	a	set	of	use	cases	that	describe	all	of	the	interactions	that
the	users	will	have	with	the	software.	Use	cases	are	also	known	as	functional	requirements.	In	addition	to	use	cases,	the	SRS	also	contains	nonfunctional	(or	supplementary)	requirements.
Non-functional	requirements	are	requirements	which	impose	constraints	on	the	design	or	implementation	(such	as	performance	requirements,	quality	standards,	or	design	constraints).

Recommended	approaches	for	the	specification	of	software	requirements	are	described	by	IEEE	830-1998.	This	standard	describes	possible	structures,	desirable	contents,	and	qualities	of	a
software	requirements	specification.

⇔==	Types	of	Requirements	==	Requirements	are	categorized	in	several	ways.	The	following	are	common	categorizations	of	requirements	that	relate	to	technical	management:

Customer	Requirements	
Statements	of	fact	and	assumptions	that	define	the	expectations	of	the	system	in	terms	of	mission	objectives,	environment,	constraints,	and	measures	of	effectiveness	and	suitability
(MOE/MOS).	The	customers	are	those	that	perform	the	eight	primary	functions	of	systems	engineering,	with	special	emphasis	on	the	operator	as	the	key	customer.	Operational
requirements	will	define	the	basic	need	and,	at	a	minimum,	answer	the	questions	posed	in	the	following	listing:[1]

Operational	distribution	or	deployment:	Where	will	the	system	be	used?
Mission	profile	or	scenario:	How	will	the	system	accomplish	its	mission	objective?
Performance	and	related	parameters:	What	are	the	critical	system	parameters	to	accomplish	the	mission?
Utilization	environments:	How	are	the	various	system	components	to	be	used?
Effectiveness	requirements:	How	effective	or	efficient	must	the	system	be	in	performing	its	mission?
Operational	life	cycle:	How	long	will	the	system	be	in	use	by	the	user?
Environment:	What	environments	will	the	system	be	expected	to	operate	in	an	effective	manner?

Architectural	Requirements
Architectural	requirements	explain	what	has	to	be	done	by	identifying	the	necessary	system	architecture	of	a	system.

Structural	Requirements
Structural	requirements	explain	what	has	to	be	done	by	identifying	the	necessary	structure	of	a	system.

Behavioral	Requirements
Behavioral	requirements	explain	what	has	to	be	done	by	identifying	the	necessary	behavior	of	a	system.

Functional	Requirements
Functional	requirements	explain	what	has	to	be	done	by	identifying	the	necessary	task,	action	or	activity	that	must	be	accomplished.	Functional	requirements	analysis	will	be	used	as
the	toplevel	functions	for	functional	analysis.[1]

Non-functional	Requirements
Non-functional	requirements	are	requirements	that	specify	criteria	that	can	be	used	to	judge	the	operation	of	a	system,	rather	than	specific	behaviors.

Performance	Requirements
The	extent	to	which	a	mission	or	function	must	be	executed;	generally	measured	in	terms	of	quantity,	quality,	coverage,	timeliness	or	readiness.	During	requirements	analysis,
performance	(how	well	does	it	have	to	be	done)	requirements	will	be	interactively	developed	across	all	identified	functions	based	on	system	life	cycle	factors;	and	characterized	in	terms
of	the	degree	of	certainty	in	their	estimate,	the	degree	of	criticality	to	system	success,	and	their	relationship	to	other	requirements.

Design	Requirements
The	“build	to,”	“code	to,”	and	“buy	to”	requirements	for	products	and	“how	to	execute”	requirements	for	processes	expressed	in	technical	data	packages	and	technical	manuals.

Derived	Requirements
Requirements	that	are	implied	or	transformed	from	higher-level	requirement.	For	example,	a	requirement	for	long	range	or	high	speed	may	result	in	a	design	requirement	for	low
weight.[1]

Allocated	Requirements
A	requirement	that	is	established	by	dividing	or	otherwise	allocating	a	high-level	requirement	into	multiple	lower-level	requirements.	Example:	A	100-pound	item	that	consists	of	two
subsystems	might	result	in	weight	requirements	of	70	pounds	and	30	pounds	for	the	two	lower-level	items.[1]

Well-known	requirements	categorization	models	include	FURPS	and	FURPS+,	developed	at	Hewlett-Packard.

Software	requirements	specification

Requirements	analysis	issues

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-SEF01-124
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-SEF01-124
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-SEF01-124
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-SEF01-124

www.manaraa.com

Steve	McConnell,	in	his	book	Rapid	Development,	details	a	number	of	ways	users	can	inhibit	requirements	gathering:

Users	do	not	understand	what	they	want	or	users	don't	have	a	clear	idea	of	their	requirements
Users	will	not	commit	to	a	set	of	written	requirements
Users	insist	on	new	requirements	after	the	cost	and	schedule	have	been	fixed
Communication	with	users	is	slow
Users	often	do	not	participate	in	reviews	or	are	incapable	of	doing	so
Users	are	technically	unsophisticated
Users	do	not	understand	the	development	process
Users	do	not	know	about	present	technology

This	may	lead	to	the	situation	where	user	requirements	keep	changing	even	when	system	or	product	development	has	been	started.

Possible	problems	caused	by	engineers	and	developers	during	requirements	analysis	are:

Technical	personnel	and	end-users	may	have	different	vocabularies.	Consequently,	they	may	wrongly	believe	they	are	in	perfect	agreement	until	the	finished	product	is	supplied.
Engineers	and	developers	may	try	to	make	the	requirements	fit	an	existing	system	or	model,	rather	than	develop	a	system	specific	to	the	needs	of	the	client.
Analysis	may	often	be	carried	out	by	engineers	or	programmers,	rather	than	personnel	with	the	people	skills	and	the	domain	knowledge	to	understand	a	client's	needs	properly.

One	attempted	solution	to	communications	problems	has	been	to	employ	specialists	in	business	or	system	analysis.

Techniques	introduced	in	the	1990s	like	prototyping,	Unified	Modeling	Language	(UML),	use	cases,	and	Agile	software	development	are	also	intended	as	solutions	to	problems	encountered
with	previous	methods.

Also,	a	new	class	of	application	simulation	or	application	definition	tools	have	entered	the	market.	These	tools	are	designed	to	bridge	the	communication	gap	between	business	users	and
the	IT	organization	—	and	also	to	allow	applications	to	be	'test	marketed'	before	any	code	is	produced.	The	best	of	these	tools	offer:

electronic	whiteboards	to	sketch	application	flows	and	test	alternatives
ability	to	capture	business	logic	and	data	needs
ability	to	generate	high	fidelity	prototypes	that	closely	imitate	the	final	application
interactivity
capability	to	add	contextual	requirements	and	other	comments
ability	for	remote	and	distributed	users	to	run	and	interact	with	the	simulation

1.	 Systems	Engineering	Fundamentals.	(http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf)	Defense	Acquisition	University	Press,	2001
2.	 Executive	editors:	Alain	Abran,	James	W.	Moore;	editors	Pierre	Bourque,	Robert	Dupuis,	ed	(March	2005).	"Chapter	2:	Software	Requirements"

body	of	knowledge	(2004	ed.).	Los	Alamitos,	CA:	IEEE	Computer	Society	Press.	ISBN	0-7695-2330-7.	http://www.computer.org/portal/web/swebok/html/ch2
"It	is	widely	acknowledged	within	the	software	industry	that	software	engineering	projects	are	critically	vulnerable	when	these	activities	are	performed	poorly."

3.	 Wiegers,	Karl	E.	(2003).	Software	Requirements	(2nd	ed.).	Redmond,	WA:	Microsoft	Press.	ISBN	0-7356-1879-8.	
4.	 Phillip	A.	Laplante	(2007)	What	Every	Engineer	Should	Know	about	Software	Engineering.	Page	44.

Laplante,	Phil	(2009).	Requirements	Engineering	for	Software	and	Systems	(1st	ed.).	Redmond,	WA:	CRC	Press.	
http://beta.crcpress.com/product/isbn/9781420064674.
McConnell,	Steve	(1996).	Rapid	Development:	Taming	Wild	Software	Schedules	(1st	ed.).	Redmond,	WA:	Microsoft	Press.	
Wiegers,	Karl	E.	(2003).	Software	Requirements	(2nd	ed.).	Redmond,	WA:	Microsoft	Press.	ISBN	0-7356-1879-8.	
Andrew	Stellman	and	Jennifer	Greene	(2005).	Applied	Software	Project	Management.	Cambridge,	MA:	O'Reilly	Media.	
Brian	Berenbach,	Daniel	Paulish,	Juergen	Katzmeier,	Arnold	Rudorfer	(2009).	Software	&	Systems	Requirements	Engineering:	In	Practice
ISBN	0-07-1605479.	http://www.mhprofessional.com.
Walter	Sobkiw	(2008).	Sustainable	Development	Possible	with	Creative	System	Engineering.	New	Jersey:	CassBeth.	
http://www.amazon.com/exec/obidos/ASIN/0615216307.

Walter	Sobkiw	(2011).	Systems	Practices	as	Common	Sense.	New	Jersey:	CassBeth.	ISBN	978-0983253082.	http://www.amazon.com/Systems-Practices-as-Common-

Stakeholder	issues

Engineer/developer	issues

Attempted	solutions

References

Further	reading

http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://www.computer.org/portal/web/swebok/html/ch2
http://www.swebok.org/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://www.computer.org/portal/web/swebok/html/ch2
http://www.processimpact.com/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://beta.crcpress.com/product/isbn/9781420064674
http://beta.crcpress.com/product/isbn/9781420064674
http://www.stevemcconnell.com/
http://www.processimpact.com/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://www.stellman-greene.com/
http://www.mhprofessional.com/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-07-1605479
http://www.mhprofessional.com/
http://www.amazon.com/exec/obidos/ASIN/0615216307
http://www.amazon.com/exec/obidos/ASIN/0615216307
http://www.amazon.com/Systems-Practices-as-Common-Sense/dp/0983253080
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/978-0983253082
http://www.amazon.com/Systems-Practices-as-Common-Sense/dp/0983253080

www.manaraa.com

Sense/dp/0983253080.

Software	Requirement	Analysis	using	UML	(http://www.slideshare.net/dhirajmusings/software-requirement-analysis-using-uml)
hiraj-shetty/6/472/165).
Requirements	Engineering	Process	"Goodies"	(http://www.processimpact.com/goodies.shtml#reqs)
Requirements	Engineering:	A	Roadmap	(http://www.cs.toronto.edu/~sme/papers/2000/ICSE2000.pdf)	(PDF)	article	by	Bashar	Nuseibeh	and	Steve	Easterbrook,	2000.

Requirements	management	is	the	process	of	documenting,	analyzing,	tracing,	prioritizing	and	agreeing	on	requirements	and	then	controlling	change	and	communicating	to	relevant
stakeholders.	It	is	a	continuous	process	throughout	a	project.	A	requirement	is	a	capability	to	which	a	project	outcome	(product	or	service)	should	conform.

The	purpose	of	requirements	management	is	to	assure	the	organization	documents,	verifies	and	meets	the	needs	and	expectations	of	its	customers	and	internal	or	external	stakeholders
Requirements	management	begins	with	the	analysis	and	elicitation	of	the	objectives	and	constraints	of	the	organization.	Requirements	management	further	includes	supporting	planning	for
requirements,	 integrating	 requirements	 and	 the	 organization	 for	 working	 with	 them	 (attributes	 for	 requirements),	 as	 well	 as	 relationships	 with	 other	 information	 delivering	 against
requirements,	and	changes	for	these.

The	traceability	thus	established	is	used	in	managing	requirements	to	report	back	fulfillment	of	company	and	stakeholder	interests,	 in	terms	of	compliance,	completeness,	coverage	and
consistency.	Traceabilities	also	support	change	management	as	part	of	requirements	management	in	understanding	the	impacts	of	changes	through	requirements	or	other	related	elements
(e.g.,	functional	impacts	through	relations	to	functional	architecture),	and	facilitating	introducing	these	changes.[2]

Requirements	management	involves	communication	between	the	project	team	members	and	stakeholders,	and	adjustment	to	requirements	changes	throughout	the	course	of	the	project
To	prevent	one	class	of	requirements	 from	overriding	another,	constant	communication	among	members	of	the	development	team	is	critical.	For	example,	 in	software	development	 for
internal	applications,	the	business	has	such	strong	needs	that	it	may	ignore	user	requirements,	or	believe	that	in	creating	use	cases,	the	user	requirements	are	being	taken	care	of.

Requirements	traceability	is	concerned	with	documenting	the	life	of	a	requirement.	It	should	be	possible	to	trace	back	to	the	origin	of	each	requirement	and	every	change	made	to	the
requirement	 should	 therefore	be	documented	 in	order	 to	achieve	 traceability.	Even	 the	use	of	 the	 requirement	after	 the	 implemented	 features	have	been	deployed	and	used	 should	be
traceable[4].

Requirements	come	from	different	sources,	like	the	business	person	ordering	the	product,	the	marketing	manager	and	the	actual	user.	These	people	all	have	different	requirements	for	the
product.	Using	requirements	traceability,	an	implemented	feature	can	be	traced	back	to	the	person	or	group	that	wanted	it	during	the	requirements	elicitation.	This	can,	for	example,	be
used	during	the	development	process	to	prioritize	the	requirement,	determining	how	valuable	the	requirement	 is	to	a	specific	user.	 It	can	also	be	used	after	the	deployment	when	user
studies	show	that	a	feature	is	not	used,	to	see	why	it	was	required	in	the	first	place.

At	 each	 stage	 in	 a	 development	 process,	 there	 are	 key	 requirements	 management	 activities	 and	 methods.	 To	 illustrate,	 consider	 a	 standard	 five-phase	 development	 process	 with
Investigation,	Feasibility,	Design,	Construction	and	Test,	and	Release	stages.

In	Investigation,	the	first	three	classes	of	requirements	are	gathered	from	the	users,	from	the	business	and	from	the	development	team.	In	each	area,	similar	questions	are	asked;	what	are
the	 goals,	 what	 are	 the	 constraints,	 what	 are	 the	 current	 tools	 or	 processes	 in	 place,	 and	 so	 on.	 Only	 when	 these	 requirements	 are	 well	 understood	 can	 functional	 requirements	 be
developed.

A	caveat	is	required	here:	no	matter	how	hard	a	team	tries,	requirements	cannot	be	fully	defined	at	the	beginning	of	the	project.	Some	requirements	will	change,	either	because	they	simply
weren’t	extracted,	or	because	internal	or	external	forces	at	work	affect	the	project	in	mid-cycle.	Thus,	the	team	members	must	agree	at	the	outset	that	a	prime	condition	for	success	is
flexibility	in	thinking	and	operation.

The	deliverable	from	the	Investigation	stage	is	a	requirements	document	that	has	been	approved	by	all	members	of	the	team.	Later,	in	the	thick	of	development,	this	document	will	be
critical	in	preventing	scope	creep	or	unnecessary	changes.	As	the	system	develops,	each	new	feature	opens	a	world	of	new	possibilities,	so	the	requirements	specification	anchors	the	team	to
the	original	vision	and	permits	a	controlled	discussion	of	scope	change.

While	many	organizations	still	use	only	documents	to	manage	requirements,	others	manage	their	requirements	baselines	using	software	tools.	These	tools	allow	requirements	to	be	managed
in	 a	database,	 and	usually	have	 functions	 to	 automate	 traceability	 (e.g.,	 by	allowing	 electronic	 links	 to	be	 created	between	parent	 and	 child	 requirements,	 or	between	 test	 cases	 and
requirements),	electronic	baseline	creation,	version	control,	and	change	management.	Usually	such	tools	contain	an	export	function	that	allows	a	specification	document	to	be	created	by
exporting	the	requirements	data	into	a	standard	document	application.

In	the	Feasibility	stage,	costs	of	the	requirements	are	determined.	For	user	requirements,	the	current	cost	of	work	is	compared	to	the	future	projected	costs	once	the	new	system	is	in	place.
Questions	such	as	these	are	asked:	“What	are	data	entry	errors	costing	us	now?”	Or	“What	is	the	cost	of	scrap	due	to	operator	error	with	the	current	interface?”	Actually,	the	need	for	the
new	tool	is	often	recognized	as	these	questions	come	to	the	attention	of	financial	people	in	the	organization.

Business	costs	would	include,	“What	department	has	the	budget	for	this?”	“What	is	the	expected	rate	of	return	on	the	new	product	in	the	marketplace?”	“What’s	the	internal	rate	of
return	in	reducing	costs	of	training	and	support	if	we	make	a	new,	easier-to-use	system?”

Technical	costs	are	related	to	software	development	costs	and	hardware	costs.	“Do	we	have	the	right	people	to	create	the	tool?”	“Do	we	need	new	equipment	to	support	expanded	software
roles?”	This	last	question	is	an	important	type.	The	team	must	inquire	into	whether	the	newest	automated	tools	will	add	sufficient	processing	power	to	shift	some	of	the	burden	from	the
user	to	the	system	in	order	to	save	people	time.

The	question	also	points	out	a	fundamental	point	about	requirements	management.	A	human	and	a	tool	form	a	system,	and	this	realization	is	especially	important	if	the	tool	is	a	computer
or	a	new	application	on	a	computer.	The	human	mind	excels	in	parallel	processing	and	interpretation	of	trends	with	insufficient	data.	The	CPU	excels	in	serial	processing	and	accurate
mathematical	computation.	The	overarching	goal	of	the	requirements	management	effort	for	a	software	project	would	thus	be	to	make	sure	the	work	being	automated	gets	assigned	to	the

External	links

Requirements	Management

Overview

Traceability

Requirements	activities

Investigation

Feasibility

http://www.amazon.com/Systems-Practices-as-Common-Sense/dp/0983253080
http://www.slideshare.net/dhirajmusings/software-requirement-analysis-using-uml
http://in.linkedin.com/pub/dhiraj-shetty/6/472/165
http://www.processimpact.com/goodies.shtml#reqs
http://www.cs.toronto.edu/~sme/papers/2000/ICSE2000.pdf
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-129
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-131

www.manaraa.com

proper	processor.	For	instance,	“Don’t	make	the	human	remember	where	she	is	in	the	interface.	Make	the	interface	report	the	human’s	location	in	the	system	at	all	times.”	Or	“Don’t	make
the	human	enter	the	same	data	in	two	screens.	Make	the	system	store	the	data	and	fill	in	the	second	screen	as	needed.”

The	deliverable	from	the	Feasibility	stage	is	the	budget	and	schedule	for	the	project.

Assuming	that	costs	are	accurately	determined	and	benefits	to	be	gained	are	sufficiently	large,	the	project	can	proceed	to	the	Design	stage.	In	Design,	the	main	requirements	management
activity	is	comparing	the	results	of	the	design	against	the	requirements	document	to	make	sure	that	work	is	staying	in	scope.

Again,	flexibility	is	paramount	to	success.	Here’s	a	classic	story	of	scope	change	in	mid-stream	that	actually	worked	well.	Ford	auto	designers	in	the	early	‘80s	were	expecting	gasoline
prices	to	hit	$3.18	per	gallon	by	the	end	of	the	decade.	Midway	through	the	design	of	the	Ford	Taurus,	prices	had	centered	to	around	$1.50	a	gallon.	The	design	team	decided	they	could
build	a	larger,	more	comfortable,	and	more	powerful	car	if	the	gas	prices	stayed	low,	so	they	redesigned	the	car.	The	Taurus	launch	set	nationwide	sales	records	when	the	new	car	came
out,	primarily	because	it	was	so	roomy	and	comfortable	to	drive.

In	most	cases,	however,	departing	from	the	original	requirements	to	that	degree	does	not	work.	So	the	requirements	document	becomes	a	critical	tool	that	helps	the	team	make	decisions
about	design	changes.

In	the	construction	and	testing	stage,	the	main	activity	of	requirements	management	is	to	make	sure	that	work	and	cost	stay	within	schedule	and	budget,	and	that	the	emerging	tool	does
in	fact	meet	requirements.	A	main	tool	used	in	this	stage	is	prototype	construction	and	iterative	testing.	For	a	software	application,	the	user	interface	can	be	created	on	paper	and	tested
with	potential	users	while	the	framework	of	the	software	is	being	built.	Results	of	these	tests	are	recorded	in	a	user	interface	design	guide	and	handed	off	to	the	design	team	when	they	are
ready	to	develop	the	interface.	This	saves	their	time	and	makes	their	jobs	much	easier.

Requirements	management	does	not	end	with	product	release.	From	that	point	on,	the	data	coming	in	about	the	application’s	acceptability	is	gathered	and	fed	into	the	Investigation	phase
of	the	next	generation	or	release.	Thus	the	process	begins	again.

There	exist	both	desktop	and	Web-based	tools	for	requirements	management.	A	Web-based	requirements	tool	can	be	installed	at	the	customer′s	datacenter	or	can	be	offered	as	an	on-
demand	requirements	management	platform	which	in	some	cases	is	completely	free.	There	used	to	be	a	list	of	such	tools	maintained	by	
it	in	2015.[5]

The	system	engineering	modeling	language	SysML	incorporates	a	requirements	diagram	allowing	the	developer	to	graphically	organize,	manage,	and	trace	requirements.

An	on-demand	 requirements	management	platform	 is	 a	 fully	hosted	 requirements	management	 solution,	where	 the	only	 system	requirements	would	normally	be	 Internet	access	and	a
standard	Web	browser.

The	 service	 would	 normally	 include	 all	 special	 hardware	 and	 software.	 Other	 services	 may	 include	 technology	 and	 processes	 designed	 to	 secure	 your	 data	 against	 physical	 loss	 and
unauthorized	use,	24×7	data	availability,	and	assurance	that	the	service	will	scale	as	you	add	users,	applications,	and	additional	activities.

Some	on-demand	requirements	management	platforms	charge	a	fee	while	others	are	free	to	use.

1.	 Stellman,	Andrew;	Greene,	Jennifer	(2005).	Applied	Software	Project	Management.	O'Reilly	Media.	ISBN	978-0-596-00948-9
2.	 "Requirements	management".	UK	Office	of	Government	Commerce.	http://www.ogc.gov.uk/delivery_lifecycle_requirements_management.asp
3.	 A	Guide	to	the	Project	Management	Body	of	Knowledge	(4th	ed.).	Project	Management	Institute.	2008.	ISBN	978-1-933-89051-7
4.	 Gotel,	O.,	Finkelstein,	A.	An	Analysis	of	the	Requirements	Traceability	Problem	Proc.	of	First	International	Conference	on	Requirements	Engineering,	1994,	pages	94-101
5.	 "Requirements	Management	Tools	Survey".	International	Council	on	Systems	Engineering.	Archived	from	the	original
https://web.archive.org/web/20150319021445/http://www.incose.org/ProductsPubs/products/rmsurvey.aspx.	Retrieved	04	June	2017

CMMI	Product	Team	(August	2006)	(PDF).	CMMI	for	Development,	Version	1.2.	Technical	Report	CMU/SEI-2006-TR-008.	Software	Engineering	Institute
http://www.sei.cmu.edu/library/abstracts/reports/06tr008.cfm.	Retrieved	2008-01-22.
Colin	Hood,	Simon	Wiedemann,	Stefan	Fichtinger,	Urte	Pautz	Requirements	Management:	Interface	Between	Requirements	Development	and	All	Other	Engineering	Processes
Springer,	Berlin	2007,	ISBN	354047689X

Washington	State	Information	Services	Board	(ISB)policy:	CMM	Key	Practices	for	Level	2	-	Requirements	Management
U.K.	Office	of	Government	Commerce	(OGC)	-	Requirements	management	(http://www.ogc.gov.uk/delivery_lifecycle_requirements_management.asp)

A	functional	specification	(also,	functional	spec,	specs,	functional	specifications	document	(FSD),	or	Program	specification

Design

Construction	and	test

Release

Tools

Modeling	Languages

On-demand	requirements	management	platforms

References

Further	reading

External	links

Specification

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-132
http://www.stellman-greene.com/aspm/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/978-0-596-00948-9
http://www.ogc.gov.uk/delivery_lifecycle_requirements_management.asp
http://www.ogc.gov.uk/delivery_lifecycle_requirements_management.asp
http://www.pmi.org/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/978-1-933-89051-7
https://web.archive.org/web/20150319021445/http://www.incose.org/ProductsPubs/products/rmsurvey.aspx
http://www.incose.org/ProductsPubs/products/rmsurvey.aspx
https://web.archive.org/web/20150319021445/http://www.incose.org/ProductsPubs/products/rmsurvey.aspx
http://www.sei.cmu.edu/library/abstracts/reports/06tr008.cfm
http://www.sei.cmu.edu/library/abstracts/reports/06tr008.cfm
https://en.wikibooks.org/wiki/Special:BookSources/354047689X
http://isb.wa.gov/policies/portfolio/tr25/tr25_l2a.html
http://www.ogc.gov.uk/delivery_lifecycle_requirements_management.asp

www.manaraa.com

A	functional	specification	(also,	functional	spec,	specs,	functional	specifications	document	(FSD),	or	Program	specification
documentation	that	describes	the	requested	behavior	of	an	engineering	system.	The	documentation	typically	describes	what	is	needed	by	the	system
user	as	well	as	requested	properties	of	inputs	and	outputs	(e.g.	of	the	software	system).

In	systems	engineering	a	specification	is	a	document	that	clearly	and	accurately	describes	the	essential	technical	requirements	for	items,	materials,	or
services	 including	the	procedures	by	which	 it	 can	be	determined	that	 the	 requirements	have	been	met.	Specifications	help	avoid	duplication	and
inconsistencies,	allow	for	accurate	estimates	of	necessary	work	and	resources,	act	as	a	negotiation	and	reference	document	for	engineering	changes,
provide	documentation	of	configuration,	and	allow	for	consistent	communication	among	those	responsible	for	the	eight	primary	functions	of	Systems
Engineering.	They	provide	a	precise	idea	of	the	problem	to	be	solved	so	that	they	can	efficiently	design	the	system	and	estimate	the	cost	of	design
alternatives.	They	provide	guidance	to	testers	for	verification	(qualification)	of	each	technical	requirement.[1]

A	functional	specification	does	not	define	the	inner	workings	of	the	proposed	system;	it	does	not	include	the	specification	how	the	system	function
will	be	implemented.	Instead,	it	focuses	on	what	various	outside	agents	(people	using	the	program,	computer	peripherals,	or	other	computers,	for
example)	might	"observe"	when	interacting	with	the	system.	A	typical	functional	specification	might	state	the	following:

When	the	user	clicks	the	OK	button,	the	dialog	is	closed	and	the	focus	is	returned	to	the	main	window	in	the	state	it	was	in	before	this	dialog
was	displayed.

Such	a	requirement	describes	an	 interaction	between	an	external	agent	(the	user)	and	the	software	system.	When	the	user	provides	 input	to	the
system	by	clicking	the	OK	button,	the	program	responds	(or	should	respond)	by	closing	the	dialog	window	containing	the	OK	button.

It	can	be	informal,	in	which	case	it	can	be	considered	as	a	blueprint	or	user	manual	from	a	developer	point	of	view,	or	
definite	meaning	defined	in	mathematical	or	programmatic	terms.	In	practice,	most	successful	specifications	are	written	to	understand	and	fine-tune
applications	 that	 were	 already	 well-developed,	 although	 safety-critical	 software	 systems	 are	 often	 carefully	 specified	 prior	 to	 application
development.	Specifications	are	most	important	for	external	interfaces	that	must	remain	stable.

There	are	many	purposes	for	functional	specifications.	One	of	the	primary	purposes	on	team	projects	is	to	achieve	some	form	of	team	consensus	on
what	 the	 program	 is	 to	 achieve	 before	 making	 the	 more	 time-consuming	 effort	 of	 writing	 source	 code	 and	 test	 cases,	 followed	 by	 a	 period	 of
debugging.	Typically,	such	consensus	is	reached	after	one	or	more	reviews	by	the	stakeholders	on	the	project	at	hand	after	having	negotiated	a	cost-
effective	way	to	achieve	the	requirements	the	software	needs	to	fulfill.

In	the	ordered	industrial	software	engineering	life-cycle	(waterfall	model),	functional	specification	describes	what	has	to	be	implemented.	The	next	system	specification	document	describes
how	the	functions	will	be	realized	using	a	chosen	software	environment.	In	not	industrial,	prototypical	systems	development,	functional	specifications	are	typically	written	after	or	as	part
of	requirements	analysis.

When	the	team	agrees	that	functional	specification	consensus	is	reached,	the	functional	spec	is	typically	declared	"complete"	or	"signed	off".	After	this,	typically	the	software	development
and	 testing	 team	write	 source	 code	and	 test	 cases	using	 the	 functional	 specification	as	 the	 reference.	While	 testing	 is	performed	 the	behavior	of	 the	program	 is	 compared	against	 the
expected	behavior	as	defined	in	the	functional	specification.

Advanced	Microcontroller	Bus	Architecture
Bit	specification
Design	specification
Diagnostic	design	specification
Multiboot	Specification
Product	design	specification
Real-time	specification	for	Java
Software	Requirements	Specification

1.	 Systems	Engineering	Fundamentals.	(http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf)	Defense	Acquisition	University	Press,	2001

Writing	functional	specifications	Tutorial	(http://www.mojofat.com/tutorial/)
Painless	Functional	Specifications,	4-part	series	by	Joel	Spolsky	(http://www.joelonsoftware.com/articles/fog0000000036.html)

Architecture	&	Design

When	you	build	your	house,	you	would	never	think	about	building	it	without	an	architect,	correct?	However,	many	medium	to	large	size	software	projects	are	build	without	a	software

Overview

Functional	specification	topics

Purpose

Process

Types	of	software	development	specifications

References

External	links

Introduction

Introduction

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-SEF01-133
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://www.mojofat.com/tutorial/
http://www.joelonsoftware.com/articles/fog0000000036.html

www.manaraa.com

When	you	build	your	house,	you	would	never	think	about	building	it	without	an	architect,	correct?	However,	many	medium	to	large	size	software	projects	are	build	without	a	software
architect.	That	seems	kind	of	scary,	and	you	might	wonder	why?	Well,	the	role	of	the	software	architect	has	neither	been	widely	understood,	nor	his	necessity	been	acknowledged.	Even	to
date	there	is	still	no	agreement	on	the	precise	definition	of	the	term	“software	architecture”.[1]

Matthew	R.	McBride	writes,	"a	software	architect	is	a	technically	competent	system-level	thinker,	guiding	planned	and	efficient	design	processes	to	bring	a	system	into	existence.	He	is
viewed	by	customers	and	developers	alike	as	a	technical	expert.	The	architect	is	the	author	of	the	solution,	accountable	for	its	success	or	failure."	
refers	to	documentation	of	a	system's	software	architecture.	Documenting	software	architecture	facilitates	communication	between	stakeholders,	documents	early	decisions	about	high-level
design,	and	allows	reuse	of	design	components	and	patterns	between	projects.[3]

Software	 architecture,	 also	 described	 as	 strategic	 design,	 is	 an	 activity	 concerned	with	 global	 requirements	 governing	
architectural	styles,	component-based	software	engineering	standards,	architectural	patterns,	security,	scale,	integration,	and	law-governed	regularities.	Functional	design,	also	described	as
tactical	 design,	 is	 an	 activity	 concerned	with	 local	 requirements	 governing	what	 a	 solution	 does	 such	 as	 algorithms,	 design	 patterns,	 programming	 idioms,	 refactorings,	 and	 low-level
implementation.

Architecture	is	design	but	not	all	design	is	architectural.[4]	In	practice,	the	architect	is	the	one	who	draws	the	line	between	software	architecture	(architectural	design)	and	detailed	design
(non-architectural	design).	There	aren't	rules	or	guidelines	that	fit	all	cases.	Examples	of	rules	or	heuristics	that	architects	(or	organizations)	can	establish	when	they	want	to	distinguish
between	architecture	and	detailed	design	include:

Architecture	is	driven	by	non-functional	requirements,	while	functional	design	is	driven	by	functional	requirements.
Pseudo-code	belongs	in	the	detailed	design	document.
UML	component,	deployment,	and	package	diagrams	generally	appear	in	software	architecture	documents;	UML	class,	object,	and	behavior	diagrams	appear	in	detailed	functional
design	documents.

The	field	of	computer	science	has	come	across	problems	associated	with	complexity	since	its	formation.[5]	Earlier	problems	of	complexity	were	solved	by	developers	by	choosing	the	right
data	structures,	developing	algorithms,	and	by	applying	the	concept	of	separation	of	concerns.	Although	the	term	“software	architecture”	is	relatively	new	to	the	industry,	the	fundamental
principles	of	the	field	have	been	applied	sporadically	by	software	engineering	pioneers	since	the	mid	1980s.	Early	attempts	to	capture	and	explain	software	architecture	of	a	system	were
imprecise	and	disorganized,	often	characterized	by	a	set	of	box-and-line	diagrams.[6]	During	the	1990s	there	was	a	concentrated	effort	 to	define	and	codify	 fundamental	aspects	of	 the
discipline.	Initial	sets	of	design	patterns,	styles,	best	practices,	description	languages,	and	formal	logic	were	developed	during	that	time.

As	a	maturing	discipline	with	no	clear	rules	on	the	right	way	to	build	a	system,	designing	software	architecture	is	still	a	mix	of	art	and	science.	The	“art”	aspect	of	software	architecture	is
because	 a	 commercial	 software	 system	 supports	 some	 aspect	 of	 a	 business	 or	 a	 mission.	 How	 a	 system	 supports	 key	 business	 drivers	 is	 described	 via	 scenarios	 as	 non-functional
requirements	of	a	system,	also	known	as	quality	attributes,	determine	how	a	system	will	behave.[7]	Every	system	is	unique	due	to	the	nature	of	the	business	drivers	it	supports,	as	such	the
degree	of	quality	attributes	exhibited	by	a	system	such	as	fault-tolerance,	backward	compatibility,	extensibility,	reliability,	maintainability,	availability,	security,	usability,	and	such	other
–ilities	will	vary	with	each	implementation.[7]

The	origin	of	software	architecture	as	a	concept	was	first	identified	in	the	research	work	of	Edsger	Dijkstra	in	1968	and	David	Parnas	in	the	early	1970s.	These	scientists	emphasized	that
the	structure	of	a	software	system	matters	and	getting	the	structure	right	is	critical.	The	study	of	the	field	increased	in	popularity	since	the	early	1990s	with	research	work	concentrating
on	architectural	styles	(patterns),	architecture	description	languages,	architecture	documentation,	and	formal	methods

Although	there	exist	'architecture	description	languages'	(see	below),	no	consensus	exists	on	which	symbol-set	or	language	should	be	used.	However,	as	already	indicated	above,	UML	is	a
standard	used	regularly	by	architects.	For	instance,	UML	component,	deployment,	and	package	diagrams	generally	appear	in	software	architecture	documents.	Thus,	the	UML	is	a	visual
language	that	is	often	being	used	to	create	software	architecture	views.

Software	architecture	views	are	analogous	to	the	different	types	of	blueprints	made	in	building	architecture.	A	view	is	a	representation	of	a	set	of	system	components	and	relationships
among	them.	[4]	Some	possible	views	are:

Functional/logic	view
Code/module	view
Development/structural	view
Concurrency/process/runtime/thread	view
Physical/deployment/install	view
User	action/feedback	view
Data	view/data	model

There	are	several	architecture	frameworks	related	to	the	domain	of	software	architecture,	most	well	known	being	the	'4+1'	model.	Also	the	Reference	Model	of	Open	Distributed	Processing
(RM-ODP)	and	the	Service-Oriented	Modeling	Framework	(SOMF)	are	being	used.	Other	architectures	such	as	the	Zachman	Framework,	DODAF,	and	TOGAF	relate	to	the	 field	of
Enterprise	architecture.

Several	 languages	 for	 describing	 software	 architectures	 ('architecture	 description	 language'	 (ADL)	 in	 ISO/IEC	42010	 /	 IEEE-1471	 terminology)	 have	 been	 devised.	ADLs	 are	 used	 to
describe	a	Software	Architecture.	Several	different	ADLs	have	been	developed	by	different	organizations,	including	AADL	(SAE	standard),	Wright	(developed	by	Carnegie	Mellon),	Acme
(developed	by	Carnegie	Mellon),	xADL	(developed	by	UCI),	Darwin	(developed	by	Imperial	College	London),	DAOP-ADL	(developed	by	University	of	Málaga),	and	ByADL	(University	of
L'Aquila,	Italy).	Common	elements	of	an	ADL	are	component,	connector	and	configuration.

Architecture	and	Design

Software	Architecture

Views	and	UML

Architecture	Frameworks

Architecture	Description	Languages

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-134
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-136
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-DSA2-137
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-138
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-139
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-softwareqa-140
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-softwareqa-140
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-DSA2-137

www.manaraa.com

1.	 SEI	(2006).	"How	do	you	define	Software	Architecture?".	http://www.sei.cmu.edu/architecture/start/definitions.cfm
2.	 McBride,	Matthew	R.	(2004).	The	software	architect:	essence,	intuition,	and	guiding	principles.	New	York:	ACM.	pp.	230-235.	
3.	 Bass,	Len;	Paul	Clements,	Rick	Kazman	(2003).	Software	Architecture	In	Practice,	Second	Edition.	Boston:	Addison-Wesley.	pp.	21–24.	
4.	 Clements,	Paul;	Felix	Bachmann,	Len	Bass,	David	Garlan,	James	Ivers,	Reed	Little,	Paulo	Merson,	Robert	Nord,	Judith	Stafford	(2010).	

and	Beyond,	Second	Edition.	Boston:	Addison-Wesley.	ISBN	0321552687.
5.	 University	of	Waterloo	(2006).	"A	Very	Brief	History	of	Computer	Science".	http://www.cs.uwaterloo.ca/~shallit/Courses/134/history.html
6.	 IEEE	Transactions	on	Software	Engineering	(2006).	"Introduction	to	the	Special	Issue	on	Software	Architecture"
resourcePath=/dl/trans/ts/&toc=comp/trans/ts/1995/04/e4toc.xml&DOI=10.1109/TSE.1995.10003.	Retrieved	2006-09-23

7.	 SoftwareArchitectures.com	(2006).	"Intro	to	Software	Quality	Attributes".	http://www.softwarearchitectures.com/one/Designing+Architecture/78.aspx
8.	 Garlan	&	Shaw	(1994).	"An	Introduction	to	Software	Architecture".	http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf

Paul	Clements,	Felix	Bachmann,	Len	Bass,	David	Garlan,	James	Ivers,	Reed	Little,	Paulo	Merson,	Robert	Nord,	Judith	Stafford:	
Beyond,	Second	Edition.	Addison-Wesley,	2010,	ISBN	0321552687.	This	book	describes	what	is	software	architecture	and	shows	how	to	document	it	in	multiple	views,	using	UML	and
other	notations.	It	also	explains	how	to	complement	the	architecture	views	with	behavior,	software	interface,	and	rationale	documentation.	Accompanying	the	book	is	a	
contains	an	example	of	software	architecture	documentation	(https://wiki.sei.cmu.edu/sad/index.php/The_Adventure_Builder_SAD)
Len	Bass,	Paul	Clements,	Rick	Kazman:	Software	Architecture	in	Practice,	Second	Edition.	Addison	Wesley,	Reading	5/9/2003	
eloquently	covers	the	fundamental	concepts	of	the	discipline.	The	theme	is	centered	around	achieving	quality	attributes	of	a	system.)
Amnon	H.	Eden,	Rick	Kazman.	Architecture,	Design,	Implementation.	(http://www.eden-study.org/articles/2003/icse03.pdf)
detailed	design.
Garzás,	Javier,	and	Piattini,	Mario.	An	ontology	for	micro-architectural	design	knowledge,	IEEE	Software	Magazine,	Volume:	22,	Issue:	2,	March-April	2005.	pp.	28	–	33.
Philippe	Kruchten:	Architectural	Blueprints	-	the	4+1	View	Model	of	Software	Architecture.	In:	IEEE	Software.	12	(6)	November	1995,	pp.	42–50	(also	available	online	at	the	
website	(http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/2003/Pbk4p1.pdf)(PDF))
Tony	Shan	and	Winnie	Hua	(2006).	Solution	Architecting	Mechanism	(http://doi.ieeecomputersociety.org/10.1109/EDOC.2006.54)
Enterprise	Computing	Conference	(EDOC	2006),	October	2006,	p23-32
SOMF:	Bell,	Michael	(2008).	"Service-Oriented	Modeling:	Service	Analysis,	Design,	and	Architecture".	Wiley.	http://www.amazon.com/Service-Oriented-Modeling-Service-Analysis-
Architecture/dp/0470141115/ref=pd_bbs_2.
The	IEEE	1471:	ANSI/IEEE	1471-2000:	Recommended	Practice	for	Architecture	Description	of	Software-Intensive	Systems	is	the	first	formal	standard	in	the	area	of	software
architecture,	and	was	adopted	in	2007	by	ISO	as	ISO/IEC	42010:2007	(IEEE	1471).

Excellent	explanation	on	IBM	Developerworks	(http://www.ibm.com/developerworks/rational/library/feb06/eeles/)
Collection	of	software	architecture	definitions	(http://www.sei.cmu.edu/architecture/start/definitions.cfm)	at	Software	Engineering	Institute	(SEI),	Carnegie	Mellon	University	(CMU)
Software	architecture	vs.	software	design:	The	Intension/Locality	Hypothesis	(http://www.eden-study.org/articles/2006/abstraction-classes-sw-design_ieesw.pdf)
Worldwide	Institute	of	Software	Architects	(WWISA)	(http://www.wwisa.org/)
International	Association	of	Software	Architects	(IASA)	(http://www.iasahome.org/iasaweb/appmanager/home/home/)
SoftwareArchitecturePortal.org	(http://www.softwarearchitectureportal.org/)	—	website	of	IFIP	Working	Group	2.10	on	Software	Architecture
Software	Architecture	(http://blog.softwarearchitecture.com/)	—	practical	resources	for	Software	Architects
SoftwareArchitectures.com	(http://www.softwarearchitectures.com/)	—	independent	resource	of	information	on	the	discipline
Microsoft	Architecture	Journal	(http://www.architecturejournal.net/)
Architectural	Patterns	(http://www.jools.net/archives/44)
Software	Architecture	(http://www.ics.uci.edu/~fielding/pubs/dissertation/software_arch.htm),	chapter	1	of	Roy	Fielding's	REST	dissertation
DiaSpec	(http://diaspec.bordeaux.inria.fr/),	an	approach	and	tool	to	generate	a	distributed	framework	from	a	software	architecture
When	Good	Architecture	Goes	Bad	(http://www.methodsandtools.com/archive/archive.php?id=85)
Software	Architecture	and	Related	Concerns	(http://www.bredemeyer.com/whatis.htm),	What	is	Software	Architecture?	And	What	Software	Architecture	
Handbook	of	Software	Architecture	(http://www.handbookofsoftwarearchitecture.com/index.jsp?page=Main)
The	Spiral	Architecture	Driven	Development	(http://sadd.codeplex.com)	-	the	SDLC	based	on	Spiral	model	is	to	reduce	the	risks	of	ineffective	architecture

References

Further	Reading

External	Links

http://www.sei.cmu.edu/architecture/start/definitions.cfm
http://www.sei.cmu.edu/architecture/start/definitions.cfm
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0321552687
http://www.cs.uwaterloo.ca/~shallit/Courses/134/history.html
http://www.cs.uwaterloo.ca/~shallit/Courses/134/history.html
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/trans/ts/&toc=comp/trans/ts/1995/04/e4toc.xml&DOI=10.1109/TSE.1995.10003
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/trans/ts/&toc=comp/trans/ts/1995/04/e4toc.xml&DOI=10.1109/TSE.1995.10003
http://www.softwarearchitectures.com/one/Designing+Architecture/78.aspx
http://www.softwarearchitectures.com/one/Designing+Architecture/78.aspx
http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
https://en.wikibooks.org/wiki/Special:BookSources/0321552687
https://wiki.sei.cmu.edu/sad/index.php/The_Adventure_Builder_SAD
http://www.eden-study.org/articles/2003/icse03.pdf
http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/2003/Pbk4p1.pdf
http://doi.ieeecomputersociety.org/10.1109/EDOC.2006.54
http://www.amazon.com/Service-Oriented-Modeling-Service-Analysis-Architecture/dp/0470141115/ref=pd_bbs_2
http://www.amazon.com/Service-Oriented-Modeling-Service-Analysis-Architecture/dp/0470141115/ref=pd_bbs_2
http://www.ibm.com/developerworks/rational/library/feb06/eeles/
http://www.sei.cmu.edu/architecture/start/definitions.cfm
http://www.eden-study.org/articles/2006/abstraction-classes-sw-design_ieesw.pdf
http://www.wwisa.org/
http://www.iasahome.org/iasaweb/appmanager/home/home/
http://www.softwarearchitectureportal.org/
http://blog.softwarearchitecture.com/
http://www.softwarearchitectures.com/
http://www.architecturejournal.net/
http://www.jools.net/archives/44
http://www.ics.uci.edu/~fielding/pubs/dissertation/software_arch.htm
http://diaspec.bordeaux.inria.fr/
http://www.methodsandtools.com/archive/archive.php?id=85
http://www.bredemeyer.com/whatis.htm
http://www.handbookofsoftwarearchitecture.com/index.jsp?page=Main
http://sadd.codeplex.com/

www.manaraa.com

Rationale	focused	software	architecture	documentation	method	(http://gupea.ub.gu.se/bitstream/2077/10490/1/gupea_2077_10490_1.pdf)

The	result	of	the	software	requirements	analysis	(SRA)	usually	is	a	specification.	The	design	helps	us	turning	this	specification	into	a	working	system.	As	we	have	seen	there	are	different
kinds	of	software	designs,	the	IEEE	Std	610.12-1990	Standard	Glossary	of	Software	Engineering	Terminology[1]	defines	the	following	distinctions:

Architectural	Design:	the	process	of	defining	a	collection	of	hardware	and	software	components	and	their	interfaces	to	establish	the	framework	for	the	development	of	a	computer
system.
Detailed	Design:	the	process	of	refining	and	expanding	the	preliminary	design	of	a	system	or	component	to	the	extent	that	the	design	is	sufficiently	complete	to	begin	implementation.
Functional	Design:	the	process	of	defining	the	working	relationships	among	the	components	of	a	system.
Preliminary	Design:	the	process	of	analyzing	design	alternatives	and	defining	the	architecture,	components,	interfaces,	and	timing/sizing	estimates	for	a	system	or	components.

Hence	 software	 design	 includes	 architectural	 views,	 but	 also	 low-level	 component	 and	 algorithm	 implementation	 issues.	 Depending	 on	 the	 type,	 a	 software	 design	may	 be	 platform-
independent	or	platform-specific.

There	are	many	aspects	to	consider	in	the	design	of	a	piece	of	software.	The	importance	of	each	should	reflect	the	goals	the	software	is	trying	to	achieve.	Some	of	these	aspects	are:

Compatibility	-	The	software	is	able	to	operate	with	other	products	that	are	designed	for	interoperability	with	another	product.	For	example,	a	piece	of	software	may	be	backward-
compatible	with	an	older	version	of	itself.
Extensibility	-	New	capabilities	can	be	added	to	the	software	without	major	changes	to	the	underlying	architecture.
Fault-tolerance	-	The	software	is	resistant	to	and	able	to	recover	from	component	failure.
Maintainability	-	The	software	can	be	restored	to	a	specified	condition	within	a	specified	period	of	time.	For	example,	antivirus	software	may	include	the	ability	to	periodically
receive	virus	definition	updates	in	order	to	maintain	the	software's	effectiveness.
Modularity	-	the	resulting	software	comprises	well	defined,	independent	components.	That	leads	to	better	maintainability.	The	components	could	be	then	implemented	and	tested	in
isolation	before	being	integrated	to	form	a	desired	software	system.	This	allows	division	of	work	in	a	software	development	project.
Packaging	-	Printed	material	such	as	the	box	and	manuals	should	match	the	style	designated	for	the	target	market	and	should	enhance	usability.	All	compatibility	information
should	be	visible	on	the	outside	of	the	package.	All	components	required	for	use	should	be	included	in	the	package	or	specified	as	a	requirement	on	the	outside	of	the	package.
Reliability	-	The	software	is	able	to	perform	a	required	function	under	stated	conditions	for	a	specified	period	of	time.
Reusability	-	the	software	is	able	to	add	further	features	and	modification	with	slight	or	no	modification.
Robustness	-	The	software	is	able	to	operate	under	stress	or	tolerate	unpredictable	or	invalid	input.	For	example,	it	can	be	designed	with	a	resilience	to	low	memory	conditions.
Security	-	The	software	is	able	to	withstand	hostile	acts	and	influences.
Usability	-	The	software	user	interface	must	be	usable	for	its	target	user/audience.	Default	values	for	the	parameters	must	be	chosen	so	that	they	are	a	good	choice	for	the	majority
of	the	users.

Designers	are	assisted	be	the	existence	of	modeling	languages.	They	can	be	used	to	express	information,	knowledge	or	systems	in	a	structure	that	is	defined	by	a	consistent	set	of	rules.	A
modeling	language	can	be	graphical	or	textual.	Examples	of	graphical	modelling	languages	for	software	design	are:

Unified	Modeling	Language	(UML)	is	a	general	modeling	language	to	describe	software	both	structurally	and	behaviorally.	It	has	a	graphical	notation	and	allows	for	extension	with	a
Profile	(UML).
Flowchart	is	a	schematic	representation	of	an	algorithm	or	a	stepwise	process,
Business	Process	Modeling	Notation	(BPMN)	is	an	example	of	a	Process	Modeling	language.
Systems	Modeling	Language	(SysML)	is	a	new	general-purpose	modeling	language	for	systems	engineering.

There	is	quite	a	few	more,	but	we	will	concentrate	mostly	on	the	UML	as	we	will	see	in	the	next	chapter.

1.	 http://standards.ieee.org/findstds/standard/610.12-1990.html	the	IEEE	Std	610.12-1990,	IEEE	standard	glossary	of	software	engineering	terminology

2.	Software	Engineering[8th	edition]-lan	Sommerville	publisher-	Pearson

Design

Software	Design

Design	Considerations

Modeling	Language

References

External	Links

http://gupea.ub.gu.se/bitstream/2077/10490/1/gupea_2077_10490_1.pdf
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-142
http://standards.ieee.org/findstds/standard/610.12-1990.html

www.manaraa.com

IEEE	Std	1016-1998	IEEE	Recommended	Practice	for	Software	Design	Descriptions	(http://standards.ieee.org/reading/ieee/std_public/new_desc/se/1016-1998.html)
A	Software	Design	Specification	Template	(http://www.cmcrossroads.com/bradapp/docs/sdd.html)

If	you	remember,	software	engineers	speak	a	common	language	called	UML.	And	if	we	use	this	analogy	of	language,	then	
instance	fairy	tales.	They	are	stories	about	commonly	occurring	problems	in	software	design	and	their	solutions.	And	as	young	children	learn	about	good	and	evil	from	fairy	tales,	beginning
software	engineers	learn	about	good	design	(design	patterns)	and	bad	design	(anti-patterns).

Patterns	originated	as	an	architectural	concept	by	Christopher	Alexander	(1977/79).	In	1987,	Kent	Beck	and	Ward	Cunningham	began	experimenting	with	the	idea	of	applying	patterns	to
programming	and	presented	their	results	at	the	OOPSLA	conference	that	year.[1][2]	In	the	following	years,	Beck,	Cunningham	and	others	followed	up	on	this	work.

Design	patterns	gained	popularity	in	computer	science	after	the	book	Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software
Four"	 (Gamma	et	al.).[3]	That	 same	 year,	 the	 first	Pattern	Languages	 of	Programming	Conference	was	 held	 and	 the	 following	 year,	 the	Portland	Pattern	Repository	was	 set	 up	 for
documentation	of	design	patterns.

In	 software	 engineering,	 a	 design	 pattern	 is	 a	 general	 reusable	 solution	 to	 a	 commonly	 occurring	 problem	 in	 software	 design.	 A	 design	 pattern	 is	 not	 a	 finished	 design	 that	 can	 be
transformed	directly	into	code.	It	 is	a	description	or	template	for	how	to	solve	a	problem	that	can	be	used	in	many	different	situations.	Object-oriented	design	patterns	typically	show
relationships	and	interactions	between	classes	or	objects,	without	specifying	the	final	application	classes	or	objects	that	are	involved.

Design	patterns	reside	 in	the	domain	of	modules	and	 interconnections.	At	a	higher	 level	 there	are	architectural	patterns	that	are	 larger	 in	scope,	usually	describing	an	overall	pattern
followed	by	an	entire	system.[4]

There	 are	many	 types	 of	 design	 patterns:	 Structural	 patterns	 address	 concerns	 related	 to	 the	 high	 level	 structure	 of	 an	 application	 being	 developed.	Computational	 patterns	 address
concerns	 related	 to	 the	 identification	 of	 key	 computations.	 Algorithm	 strategy	 patterns	 address	 concerns	 related	 to	 high	 level	 strategies	 that	 describe	 how	 to	 exploit	 application
characteristic	on	a	computation	platform.	Implementation	strategy	patterns	address	concerns	related	to	the	realization	of	the	source	code	to	support	how	the	program	itself	is	organized
and	the	common	data	structures	specific	to	parallel	programming.	Execution	patterns	address	concerns	related	to	the	support	of	the	execution	of	an	application,	including	the	strategies	in
executing	streams	of	tasks	and	building	blocks	to	support	the	synchronization	between	tasks.

Design	patterns	are	easiest	understood	when	looking	at	concrete	examples.	For	beginners	the	following	ten	patterns	may	suffice.	However,	you	should	make	it	a	habit	to	learn	about	some
of	the	other	patterns	mentioned	below.	The	more	patterns	you	know,	the	better.

The	Factory	pattern	creates	an	object	from	a	set	of	similar	classes,	based	on	some	parameter,	usually	a	string.	An	example,	is	the	creation	of	a	MessageDigest	object	in	Java:

MessageDigest	md	=	MessageDigest.getInstance("SHA-1");

If	one	changes	the	parameter	to	"MD5"	for	instance,	one	gets	an	object	that	calculates	the	message	digest	based	on	the	MD5	algorithm	instead.	The	advantage	of	using	a	parameter	is	that
changing	 the	 algorithm	 does	 not	 require	 us	 to	 re-compile	 our	 code.	 Other	 examples	 of	 this	 pattern	 are	 the	 loading	 of	 the	 database	 connection	 driver	 in	 Java	 using
Class.forName("jdbc.idbDriver"),	which	admittedly	is	some	very	odd	syntax,	but	the	idea	is	the	same.

Where	the	Factory	pattern	only	affects	one	class,	the	Abstract	Factory	pattern	affects	a	whole	bunch	of	classes.	A	well	known	example	from	Java	is	the	Swing	Look-and-Feel:

UIManager.setLookAndFeel("javax.swing.plaf.metal.MetalLookAndFeel");

This	looks	quite	similar	to	the	Factory	pattern,	but	the	difference	is	that	now	every	Swing	class	that	is	being	loaded	is	affected,	not	just	one.

This	is	one	of	the	most	dangerous	design	patterns,	when	in	doubt	don't	use	it.	Its	main	purpose	is	to	guarantee	that	only	one	instance	of	a	particular	object	exists.	Possible	applications	are
a	printer	manager	or	a	database	connection	manager.	It	is	useful	when	access	to	a	limited	resource	needs	to	be	controlled.

Nowadays,	the	Iterator	pattern	is	trivial:	it	allows	you	to	go	through	a	list	of	objects,	starting	at	the	beginning,	iterating	through	the	list	one	element	after	the	other,	until	reaching	the
end.

Also	the	Template	Method	pattern	 is	 rather	simple:	as	 soon	as	you	define	an	abstract	class,	 that	 forces	 its	 subclasses	 to	 implement	some	method,	you	are	using	a	simple	 form	of	 the
Template	pattern.

To	understand	 the	 idea	behind	 the	Command	pattern	 consider	 the	 following	 restaurant	 example:	A	 customer	 goes	 to	 a	 restaurant	 and	 orders	 some	 food.	The	waiter	 takes	 the	 order
(command,	in	this	case)	and	hands	it	to	the	cook	in	the	kitchen.	In	the	kitchen	the	command	is	executed,	and	depending	on	the	command	different	food	or	drink	is	being	prepared.

Design	Patterns

Design	Patterns

History

Definition	of	a	Design	Pattern

Examples	of	Design	Patterns

Factory	Method

Abstract	Factory

Singleton

Iterator

Template	Method

Command

Observer

http://standards.ieee.org/reading/ieee/std_public/new_desc/se/1016-1998.html
http://www.cmcrossroads.com/bradapp/docs/sdd.html
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Smith1987-143
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Beck1987-144
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-GoF-145
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-R.C.Martin-146

www.manaraa.com

The	Observer	pattern	is	one	of	the	most	popular	patterns,	and	it	has	many	variants.	Assume	you	have	a	table	in	a	spreadsheet.	That	data	can	be	displayed	in	table	form,	but	also	in	form
of	some	graph	or	histogram.	If	the	underlying	data	changes,	not	only	the	table	view	has	to	change,	but	you	also	expect	the	histogram	to	change.	To	communicate	these	changes	you	can
use	 the	Observer	pattern:	 the	underlying	data	 is	 the	observable	 and	 the	 table	 view	 as	well	 as	 the	 histogram	view	 are	
Observer	pattern	is	a	button	in	Swing	for	instance:	here	the	JButton	is	the	observable,	and	if	something	happens	to	the	button	(usually	this	means	it	was	pressed	by	the	user)	then	the
listener	(the	observer)	gets	notified.

The	Composite	pattern	is	very	wide	spread.	Basically,	it	is	a	list	that	may	contain	objects,	but	also	lists.	A	typical	example	is	a	file	system,	which	may	consist	of	directories	and	files.	Here
directories	may	contain	files,	but	also	may	contain	other	directories.	Other	examples	of	the	Composite	pattern	are	menus	that	may	contain	other	menus,	or	in	user	management	one	often
has	users	and	groups,	where	groups	may	contain	users,	but	also	other	groups.

In	the	State	pattern,	an	internal	state	of	the	object	influences	its	behavior.	Assume	you	have	some	drawing	program	in	which	you	want	to	be	able	to	draw	straight	lines	and	dotted	lines.
Instead	of	creating	different	classes	 for	 lines,	you	have	one	Line	class	that	has	an	 internal	 state	called	 'dotted'	or	 'straight'	and	depending	on	this	 internal	 state	either	dotted	 lines	or
straight	lines	are	drawn.	This	pattern	is	also	implicitly	used	by	Java,	when	setting	the	font	via	’setFont()’	or	the	color	via	'setColor()',	for	instance.

The	idea	behind	the	Proxy	pattern	is	that	we	have	some	complex	object	and	we	need	to	make	it	simpler.	One	typical	application	is	an	object	that	exists	on	another	machine,	but	you	want
to	give	the	impression	as	if	the	user	is	dealing	with	a	local	object.	Another	application	is	when	an	object	would	take	a	long	time	to	create	(like	loading	a	large	image/video),	but	the	actual
object	may	never	be	needed.	In	this	case	a	proxy	represents	the	object	until	it	is	needed.

Design	patterns	can	 speed	up	 the	development	process	by	providing	 tested,	proven	development	paradigms.	Effective	 software	design	 requires	 considering	 issues	 that	may	not	become
visible	 until	 later	 in	 the	 implementation.	Reusing	design	patterns	 helps	 to	 prevent	 subtle	 issues	 that	 can	 cause	major	 problems,	 and	 it	 also	 improves	 code	 readability	 for	 coders	 and
architects	who	are	familiar	with	the	patterns.	In	addition	to	this,	patterns	allow	developers	to	communicate	using	well-known,	well	understood	names	for	software	interactions.

In	order	to	achieve	flexibility,	design	patterns	usually	introduce	additional	levels	of	indirection,	which	in	some	cases	may	complicate	the	resulting	designs	and	hurt	application	performance.

By	definition,	a	pattern	must	be	programmed	anew	into	each	application	that	uses	it.	Since	some	authors	see	this	as	a	step	backward	from	software	reuse	as	provided	by	components,
researchers	have	worked	to	turn	patterns	into	components.	Meyer	and	Arnout	were	able	to	provide	full	or	partial	componentization	of	two-thirds	of	the	patterns	they	attempted.

Design	patterns	were	originally	grouped	into	the	categories:	creational	patterns,	structural	patterns,	and	behavioral	patterns,	and	described	using	the	concepts	of	delegation,	aggregation,
and	consultation.	Another	classification	has	also	introduced	the	notion	of	architectural	design	pattern	that	may	be	applied	at	the	architecture	level	of	the	software	such	as	the	Model-View-
Controller	pattern.	The	following	patterns	are	taken	from	Design	Patterns	[3]	and	Code	Complete,[6]	unless	otherwise	stated.

Abstract	factory:	Provide	an	interface	for	creating	families	of	related	or	dependent	objects	without	specifying	their	concrete	classes.

Builder:	Separate	the	construction	of	a	complex	object	from	its	representation	allowing	the	same	construction	process	to	create	various	representations.

Factory	method:	Define	an	interface	for	creating	an	object,	but	let	subclasses	decide	which	class	to	instantiate.	Factory	Method	lets	a	class	defer	instantiation	to	subclasses.

Lazy	initialization:	Tactic	of	delaying	the	creation	of	an	object,	the	calculation	of	a	value,	or	some	other	expensive	process	until	the	first	time	it	is	needed.

Multiton:	Ensure	a	class	has	only	named	instances,	and	provide	global	point	of	access	to	them.

Object	pool:	Avoid	expensive	acquisition	and	release	of	resources	by	recycling	objects	that	are	no	longer	in	use.	Can	be	considered	a	generalisation	of	connection	pool	and	thread
pool	patterns.

Prototype:	Specify	the	kinds	of	objects	to	create	using	a	prototypical	instance,	and	create	new	objects	by	copying	this	prototype.

Resource	acquisition	is	initialization:	Ensure	that	resources	are	properly	released	by	tying	them	to	the	lifespan	of	suitable	objects.

Singleton:	Ensure	a	class	has	only	one	instance,	and	provide	a	global	point	of	access	to	it.

Adapter	or	Wrapper:	Convert	the	interface	of	a	class	into	another	interface	clients	expect.	Adapter	lets	classes	work	together	that	could	not	otherwise	because	of	incompatible
interfaces.

Bridge:	Decouple	an	abstraction	from	its	implementation	allowing	the	two	to	vary	independently.

Composite:	Compose	objects	into	tree	structures	to	represent	part-whole	hierarchies.	Composite	lets	clients	treat	individual	objects	and	compositions	of	objects	uniformly.

Decorator:	Attach	additional	responsibilities	to	an	object	dynamically	keeping	the	same	interface.	Decorators	provide	a	flexible	alternative	to	subclassing	for	extending	functionality.

Facade:	Provide	a	unified	interface	to	a	set	of	interfaces	in	a	subsystem.	Facade	defines	a	higher-level	interface	that	makes	the	subsystem	easier	to	use.

Front	Controller:	Provide	a	unified	interface	to	a	set	of	interfaces	in	a	subsystem.	Front	Controller	defines	a	higher-level	interface	that	makes	the	subsystem	easier	to	use.

Composite

State

Proxy

Patterns	in	Practice

Classification	and	List	of	Patterns

Creational	patterns

Structural	Patterns

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-GoF-145
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-McConnell2004-148

www.manaraa.com

Flyweight:	Use	sharing	to	support	large	numbers	of	fine-grained	objects	efficiently.

Proxy:	Provide	a	surrogate	or	placeholder	for	another	object	to	control	access	to	it.

Blackboard:	Generalized	observer,	which	allows	multiple	readers	and	writers.	Communicates	information	system-wide.

Chain	of	responsibility:	Avoid	coupling	the	sender	of	a	request	to	its	receiver	by	giving	more	than	one	object	a	chance	to	handle	the	request.	Chain	the	receiving	objects	and	pass
the	request	along	the	chain	until	an	object	handles	it.

Command:	Encapsulate	a	request	as	an	object,	thereby	letting	you	parameterize	clients	with	different	requests,	queue	or	log	requests,	and	support	undoable	operations.

Interpreter:	Given	a	language,	define	a	representation	for	its	grammar	along	with	an	interpreter	that	uses	the	representation	to	interpret	sentences	in	the	language.

Iterator:	Provide	a	way	to	access	the	elements	of	an	aggregate	object	sequentially	without	exposing	its	underlying	representation.

Mediator:	Define	an	object	that	encapsulates	how	a	set	of	objects	interact.	Mediator	promotes	loose	coupling	by	keeping	objects	from	referring	to	each	other	explicitly,	and	it	lets	you
vary	their	interaction	independently.

Memento:	Without	violating	encapsulation,	capture	and	externalize	an	object's	internal	state	allowing	the	object	to	be	restored	to	this	state	later.

Null	object:	Avoid	null	references	by	providing	a	default	object.

Observer	or	Publish/subscribe:	Define	a	one-to-many	dependency	between	objects	where	a	state	change	in	one	object	results	with	all	its	dependents	being	notified	and	updated
automatically.

Servant:	Define	common	functionality	for	a	group	of	classes

Specification:	Recombinable	business	logic	in	a	boolean	fashion

State:	Allow	an	object	to	alter	its	behavior	when	its	internal	state	changes.	The	object	will	appear	to	change	its	class.

Strategy:	Define	a	family	of	algorithms,	encapsulate	each	one,	and	make	them	interchangeable.	Strategy	lets	the	algorithm	vary	independently	from	clients	that	use	it.

Template	method:	Define	the	skeleton	of	an	algorithm	in	an	operation,	deferring	some	steps	to	subclasses.	Template	Method	lets	subclasses	redefine	certain	steps	of	an	algorithm
without	changing	the	algorithm's	structure.

Visitor:	Represent	an	operation	to	be	performed	on	the	elements	of	an	object	structure.	Visitor	lets	you	define	a	new	operation	without	changing	the	classes	of	the	elements	on	which
it	operates.

Most	of	the	following	concurrency	patterns	are	taken	from	POSA2[8]

Active	Object:	Decouples	method	execution	from	method	invocation	that	reside	in	their	own	thread	of	control.	The	goal	is	to	introduce	concurrency,	by	using	asynchronous	method
invocation	and	a	scheduler	for	handling	requests.

Balking:	Only	execute	an	action	on	an	object	when	the	object	is	in	a	particular	state.

Binding	Properties:	Combining	multiple	observers	to	force	properties	in	different	objects	to	be	synchronized	or	coordinated	in	some	way.

Messaging	pattern:	The	messaging	design	pattern	(MDP)	allows	the	interchange	of	information	(i.e.	messages)	between	components	and	applications.

Double-checked	locking:	Reduce	the	overhead	of	acquiring	a	lock	by	first	testing	the	locking	criterion	(the	'lock	hint')	in	an	unsafe	manner;	only	if	that	succeeds	does	the	actual
lock	proceed.	Can	be	unsafe	when	implemented	in	some	language/hardware	combinations.	It	can	therefore	sometimes	be	considered	an	anti-pattern.

Event-based	asynchronous:	Addresses	problems	with	the	Asynchronous	pattern	that	occur	in	multithreaded	programs.

Guarded	suspension:	Manages	operations	that	require	both	a	lock	to	be	acquired	and	a	precondition	to	be	satisfied	before	the	operation	can	be	executed.

Lock:	One	thread	puts	a	"lock"	on	a	resource,	preventing	other	threads	from	accessing	or	modifying	it.[11][7]

Monitor	object:	An	object	whose	methods	are	subject	to	mutual	exclusion,	thus	preventing	multiple	objects	from	erroneously	trying	to	use	it	at	the	same	time.

Reactor:	A	reactor	object	provides	an	asynchronous	interface	to	resources	that	must	be	handled	synchronously.

Read-write	lock:	Allows	concurrent	read	access	to	an	object	but	requires	exclusive	access	for	write	operations.

Behavioral	Patterns

Concurrency	Patterns

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-POSA2-150
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-153
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-PoEAA-149

www.manaraa.com

Scheduler:	Explicitly	control	when	threads	may	execute	single-threaded	code.

Thread	pool:	A	number	of	threads	are	created	to	perform	a	number	of	tasks,	which	are	usually	organized	in	a	queue.	Typically,	there	are	many	more	tasks	than	threads.	Can	be
considered	a	special	case	of	the	object	pool	pattern.

Thread-specific	storage:	Static	or	"global"	memory	local	to	a	thread.

Another	interesting	area	where	patterns	have	a	wide	application	is	the	area	of	data	access	patterns.	Clifton	Nock	[12]

ORM	Patterns:	Domain	Object	Factory,	Object/Relational	Map,	Update	Factory

Resource	Management	Patterns:	Resource	Pool,	Resource	Timer,	Retryer,	Paging	Iterator

Cache	Patterns:	Cache	Accessor,	Demand	Cache,	Primed	Cache,	Cache	Collector,	Cache	Replicator

Concurrency	Patterns:	Transaction,	Optimistic	Lock,	Pessimistic	Lock

If	you	deal	with	J2EE	or	with	.Net	Enterprise	applications,	the	problems	that	occur	and	the	solutions	to	them	are	similar.	These	solutions	are	the	Enterprise	patterns.	The	book	
J2EE	Patterns	[13]	lists	these	patterns:

Presentation	Tier	Patterns:	Intercepting	Filter,	Front	Controller,	View	Helper,	Composite	View,	Service	to	Worker,	Dispatcher	View

Business	Tier	Patterns:	Business	Delegate,	Value	Object,	Session	Facade,	Composite	Entity,	Value	Object	Assembler,	Value	List	Handler,	Service	Locator

Integration	Tier	Patterns:	Data	Access	Object,	Service	Activator

Finally,	 in	 the	area	of	 real-time	and	 embedded	 software	development	a	vast	number	of	patterns	have	been	 identified.
Architecture	for	Real-Time	Systems[16][17]	Bruce	Powel	Douglass	lists	some	very	intriguing	patterns:

Architecture	Patterns:	Layered	Pattern,	Channel	Architecture	Pattern,	Component-Based	Architecture,	Recursive	Containment	Pattern	and	Hierarchical	Control	Pattern,
Microkernel	Architecture	Pattern,	Virtual	Machine	Pattern

Concurrency	Patterns:	Message	Queuing	Pattern,	Interrupt	Pattern,	Guarded	Call	Pattern,	Rendezvous	Pattern,	Cyclic	Executive	Pattern,	Round	Robin	Pattern

Memory	Patterns:	Static	Allocation	Pattern,	Pool	Allocation	Pattern,	Fixed	Sized	Buffer	Pattern,	Smart	Pointer	Pattern,	Garbage	Collection	Pattern,	Garbage	Compactor
Pattern

Resource	Patterns:	Critical	Section	Pattern,	Priority	Inheritance	Pattern,	Priority	Ceiling	Pattern,	Simultaneous	Locking	Pattern,	Ordered	Locking	Pattern

Distribution	Patterns:	Shared	Memory	Pattern,	Remote	Method	Call	Pattern,	Observer	Pattern,	Data	Bus	Pattern,	Proxy	Pattern,	Broker	Pattern

Safety	and	Reliability	Patterns:	Monitor-Actuator	Pattern,	Sanity	Check	Pattern,	Watchdog	Pattern,	Safety	Executive	Pattern,	Protected	Single	Channel	Pattern,
Homogeneous	Redundancy	Pattern,	Triple	Modular	Redundancy	Pattern,	Heterogeneous	Redundancy	Pattern

Efforts	have	also	been	made	to	codify	design	patterns	in	particular	domains,	including	use	of	existing	design	patterns	as	well	as	domain	specific	design	patterns.	Examples	include	user
interface	 design	 patterns,[18]	 information	 visualization	 [19],	 secure	 design[20],	 "secure	 usability"[21],	 web	 design	 [22]
Programming	Conference	proceedings	[24]	include	many	examples	of	domain	specific	patterns.

Assume	you	discovered	a	new	design	pattern.	Or	your	friend	wants	to	explain	to	you	this	cool	pattern	she	found	in	a	pattern	repository.	How	do	we	describe	patterns?	There	is	no	single,
standard	 format	 for	documenting	design	patterns.	Rather,	a	variety	of	different	 formats	have	been	used	by	different	pattern	authors.
pattern	 forms	 have	 become	 more	 well-known	 than	 others,	 and	 consequently	 become	 common	 starting	 points	 for	 new	 pattern	 writing	 efforts.
documentation	format	is	the	one	used	by	the	book	Design	Patterns.[3]	It	contains	the	following	sections:

Pattern	Name	and	Classification:	A	descriptive	and	unique	name	that	helps	in	identifying	and	referring	to	the	pattern.
Intent:	A	description	of	the	goal	behind	the	pattern	and	the	reason	for	using	it.
Also	Known	As:	Other	names	for	the	pattern.
Motivation	(Forces):	A	scenario	consisting	of	a	problem	and	a	context	in	which	this	pattern	can	be	used.
Applicability:	Situations	in	which	this	pattern	is	usable;	the	context	for	the	pattern.

Data	Access	Patterns

Enterprise	Patterns

Real-Time	Patterns

Documenting	and	Describing	Patterns

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-154
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-155
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-158
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-159
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-160
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-161
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-162
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-163
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-164
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-166
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-GoF-145

www.manaraa.com

Structure:	A	graphical	representation	of	the	pattern.	Class	diagrams	and	Interaction	diagrams	may	be	used	for	this	purpose.
Participants:	A	listing	of	the	classes	and	objects	used	in	the	pattern	and	their	roles	in	the	design.
Collaboration:	A	description	of	how	classes	and	objects	used	in	the	pattern	interact	with	each	other.
Consequences:	A	description	of	the	results,	side	effects,	and	trade	offs	caused	by	using	the	pattern.
Implementation:	A	description	of	an	implementation	of	the	pattern;	the	solution	part	of	the	pattern.
Sample	Code:	An	illustration	of	how	the	pattern	can	be	used	in	a	programming	language.
Known	Uses:	Examples	of	real	usages	of	the	pattern.
Related	Patterns:	Other	patterns	that	have	some	relationship	with	the	pattern;	discussion	of	the	differences	between	the	pattern	and	similar	patterns.

Of	particular	interest	are	the	Structure,	Participants,	and	Collaboration	sections.	These	sections	describe	a	design	motif
to	 their	 particular	 designs	 to	 solve	 the	 recurrent	 problem	 described	 by	 the	 design	 pattern.	 A	micro-architecture	 is	 a	 set	 of	 program	 constituents	 (e.g.,	 classes,	methods...)	 and	 their
relationships.	 Developers	 use	 the	 design	 pattern	 by	 introducing	 in	 their	 designs	 this	 prototypical	micro-architecture,	 which	means	 that	micro-architectures	 in	 their	 designs	 will	 have
structure	and	organization	similar	to	the	chosen	design	motif.

1.	 Smith,	Reid	(October	1987).	"Panel	on	design	methodology".	OOPSLA	'87	Addendum	to	the	Proceedings.	OOPSLA	'87.	
too	much	programming	at,	what	he	termed,	'the	high	level	of	wizards.'	He	pointed	out	that	a	written	'pattern	language'	can	significantly	improve	the	selection	and	application	of
abstractions.	He	proposed	a	'radical	shift	in	the	burden	of	design	and	implementation'	basing	the	new	methodology	on	an	adaptation	of	Christopher	Alexander's	work	in	pattern
languages	and	that	programming-oriented	pattern	languages	developed	at	Tektronix	has	significantly	aided	their	software	development	efforts."

2.	 Beck,	Kent;	Ward	Cunningham	(September	1987).	"Using	Pattern	Languages	for	Object-Oriented	Program".	OOPSLA	'87	workshop	on
Programming.	OOPSLA	'87.	http://c2.com/doc/oopsla87.html.	Retrieved	2006-05-26.

3.	 Gamma,	Erich;	Richard	Helm,	Ralph	Johnson,	and	John	Vlissides	(1995).	Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software
4.	 Martin,	Robert	C..	"Design	Principles	and	Design	Patterns".	http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
5.	 Meyer,	Bertrand;	Karine	Arnout	(July	2006).	"Componentization:	The	Visitor	Example".	IEEE	Computer	(IEEE)	
http://se.ethz.ch/~meyer/publications/computer/visitor.pdf.

6.	 McConnell,	Steve	(June	2004).	"Design	in	Construction".	Code	Complete	(2nd	ed.).	Microsoft	Press.	pp.	104.	ISBN
7.	 Fowler,	Martin	(2002).	Patterns	of	Enterprise	Application	Architecture.	Addison-Wesley.	ISBN	978-0321127426.	
8.	 ,	unless	stated	otherwise.	Schmidt,	Douglas	C.;	Michael	Stal,	Hans	Rohnert,	Frank	Buschmann	(2000).	Pattern-Oriented	Software	Architecture,	Volume	2:	Patterns	for	Concurrent	and

Networked	Objects.	John	Wiley	&	Sons.	ISBN	0-471-60695-2.
9.	 http://c2.com/cgi/wiki?BindingProperties
10.	 Christian	Nagel,	Bill	Evjen,	Jay	Glynn,	Karli	Watson,	and	Morgan	Skinner	(2008).	"Event-based	Asynchronous	Pattern".	
11.	 http://c2.com/cgi/wiki?LockPattern
12.	 Nock,	Clifton	(2003).	Data	Access	Patterns:	Database	Interactions	in	Object-Oriented	Applications.	Addison	Wesley.	
13.	 Alur,	Deepak;	John	Crupi,	Dan	Malks	(May	2003).	Core	J2EE	Patterns:	Best	Practices	and	Design	Strategies	(2nd	Edition)
14.	 "STL	Design	Patterns	II,".	EventHelix.com	Inc..	http://www.eventhelix.com/RealtimeMantra/Patterns/stl_design_patterns_2.htm
15.	 "Embedded	Design	Patterns,".	EventHelix.com	Inc..	http://www.eventhelix.com/RealtimeMantra/Patterns/.	Retrieved	2011-03-08
16.	 Douglass,	Bruce	Powel	(2002).	Real-Time	Design	Patterns:	Robust	Scalable	Architecture	for	Real-Time	Systems.	Addison	Wesley.	
17.	 Douglass,	Bruce	Powel	(1999).	Doing	Hard	Time:	Developing	Real-Time	Systems	with	UML,	Objects,	Frameworks	and	Patterns
18.	 Laakso,	Sari	A.	(2003-09-16).	"Collection	of	User	Interface	Design	Patterns".	University	of	Helsinki,	Dept.	of	Computer	Science

http://www.cs.helsinki.fi/u/salaakso/patterns/index.html.	Retrieved	2008-01-31.
19.	 Heer,	J.;	M.	Agrawala	(2006).	"Software	Design	Patterns	for	Information	Visualization".	IEEE	Transactions	on	Visualization	and	Computer	Graphics

doi:10.1109/TVCG.2006.178.	PMID	17080809.	http://vis.berkeley.edu/papers/infovis_design_patterns/.
20.	 Chad	Dougherty	et	al	(2009).	Secure	Design	Patterns.	http://www.cert.org/archive/pdf/09tr010.pdf.
21.	 Simson	L.	Garfinkel	(2005).	Design	Principles	and	Patterns	for	Computer	Systems	That	Are	Simultaneously	Secure	and	Usable
22.	 "Yahoo!	Design	Pattern	Library".	http://developer.yahoo.com/ypatterns/.	Retrieved	2008-01-31.
23.	 "How	to	design	your	Business	Model	as	a	Lean	Startup?".	http://torgronsund.wordpress.com/2010/01/06/lean-startup-business-model-pattern/
24.	 Pattern	Languages	of	Programming,	Conference	proceedings	(annual,	1994—)	[3]	(http://hillside.net/plop/pastconferences.html)
25.	 Gabriel,	Dick.	"A	Pattern	Definition".	Archived	from	the	original	on	2007-02-09.	http://web.archive.org/web/20070209224120/http://hillside.net/patterns/definition.html

2007-03-06.
26.	 Fowler,	Martin	(2006-08-01).	"Writing	Software	Patterns".	http://www.martinfowler.com/articles/writingPatterns.html

References

https://en.wikipedia.org/wiki/Kent_Beck
http://c2.com/doc/oopsla87.html
http://c2.com/doc/oopsla87.html
https://en.wikipedia.org/wiki/Erich_Gamma
https://en.wikipedia.org/wiki/Robert_C._Martin
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
https://en.wikipedia.org/wiki/Bertrand_Meyer
http://se.ethz.ch/~meyer/publications/computer/visitor.pdf
http://se.ethz.ch/~meyer/publications/computer/visitor.pdf
https://en.wikipedia.org/wiki/Steve_McConnell
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Martin_Fowler
http://martinfowler.com/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/978-0321127426
https://en.wikipedia.org/wiki/Douglas_C._Schmidt
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-471-60695-2
http://c2.com/cgi/wiki?BindingProperties
http://c2.com/cgi/wiki?LockPattern
http://www.eventhelix.com/RealtimeMantra/Patterns/stl_design_patterns_2.htm
http://www.eventhelix.com/RealtimeMantra/Patterns/stl_design_patterns_2.htm
http://www.eventhelix.com/RealtimeMantra/Patterns/
http://www.eventhelix.com/RealtimeMantra/Patterns/
http://www.cs.helsinki.fi/u/salaakso/patterns/index.html
http://www.cs.helsinki.fi/u/salaakso/patterns/index.html
http://vis.berkeley.edu/papers/infovis_design_patterns/
https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2FTVCG.2006.178
https://en.wikipedia.org/wiki/PubMed_Identifier
http://www.ncbi.nlm.nih.gov/pubmed/17080809
http://vis.berkeley.edu/papers/infovis_design_patterns/
http://www.cert.org/archive/pdf/09tr010.pdf
http://www.cert.org/archive/pdf/09tr010.pdf
http://www.simson.net/thesis/
http://developer.yahoo.com/ypatterns/
http://developer.yahoo.com/ypatterns/
http://torgronsund.wordpress.com/2010/01/06/lean-startup-business-model-pattern/
http://torgronsund.wordpress.com/2010/01/06/lean-startup-business-model-pattern/
http://hillside.net/plop/pastconferences.html
https://en.wikipedia.org/wiki/Richard_Gabriel
http://web.archive.org/web/20070209224120/http://hillside.net/patterns/definition.html
http://hillside.net/patterns/definition.html
http://web.archive.org/web/20070209224120/http://hillside.net/patterns/definition.html
https://en.wikipedia.org/wiki/Martin_Fowler
http://www.martinfowler.com/articles/writingPatterns.html
http://www.martinfowler.com/articles/writingPatterns.html

www.manaraa.com

Books

Alexander,	Christopher;	Sara	Ishikawa,	Murray	Silverstein,	Max	Jacobson,	Ingrid	Fiksdahl-King,	Shlomo	Angel	(1977).	
York:	Oxford	University	Press.	ISBN	978-0195019193.
Gamma,	Erich;	Richard	Helm,	Ralph	Johnson,	and	John	Vlissides	(1995).	Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software
Buschmann,	Frank;	Regine	Meunier,	Hans	Rohnert,	Peter	Sommerlad	(1996).	Pattern-Oriented	Software	Architecture,	Volume	1:	A	System	of	Patterns
471-95869-7.
Schmidt,	Douglas	C.;	Michael	Stal,	Hans	Rohnert,	Frank	Buschmann	(2000).	Pattern-Oriented	Software	Architecture,	Volume	2:	Patterns	for	Concurrent	and	Networked	Objects
Wiley	&	Sons.	ISBN	0-471-60695-2.
Fowler,	Martin	(2002).	Patterns	of	Enterprise	Application	Architecture.	Addison-Wesley.	ISBN	978-0321127426.
Hohpe,	Gregor;	Bobby	Woolf	(2003).	Enterprise	Integration	Patterns:	Designing,	Building,	and	Deploying	Messaging	Solutions
Freeman,	Eric	T;	Elisabeth	Robson,	Bert	Bates,	Kathy	Sierra	(2004).	Head	First	Design	Patterns.	O'Reilly	Media.	
Alur,	Deepak;	John	Crupi,	Dan	Malks	(May	2003).	Core	J2EE	Patterns:	Best	Practices	and	Design	Strategies	(2nd	Edition)
Beck,	Kent	(October	2007).	Implementation	Patterns.	Addison-Wesley.	ISBN	978-0321413093.
Beck,	Kent;	R.	Crocker,	G.	Meszaros,	J.O.	Coplien,	L.	Dominick,	F.	Paulisch,	and	J.	Vlissides	(March	1996).	Proceedings	of	the	18th	International	Conference	on	Software
Engineering.	pp.	25–30.
Nock,	Clifton	(2003).	Data	Access	Patterns:	Database	Interactions	in	Object-Oriented	Applications.	Addison	Wesley.	
Borchers,	Jan	(2001).	A	Pattern	Approach	to	Interaction	Design.	John	Wiley	&	Sons.	ISBN	0-471-49828-9.
Coplien,	James	O.;	Douglas	C.	Schmidt	(1995).	Pattern	Languages	of	Program	Design.	Addison-Wesley.	ISBN	0-201-60734-4
Coplien,	James	O.;	John	M.	Vlissides,	and	Norman	L.	Kerth	(1996).	Pattern	Languages	of	Program	Design	2.	Addison-Wesley.	
Fowler,	Martin	(1997).	Analysis	Patterns:	Reusable	Object	Models.	Addison-Wesley.	ISBN	0-201-89542-0.
Fowler,	Martin	(2002).	Patterns	of	Enterprise	Application	Architecture.	Addison-Wesley.	ISBN	978-0321127426.
Freeman,	Eric;	Elisabeth	Freeman,	Kathy	Sierra,	and	Bert	Bates	(2004).	Head	First	Design	Patterns.	O'Reilly	Media.	
Hohmann,	Luke;	Martin	Fowler	and	Guy	Kawasaki	(2003).	Beyond	Software	Architecture.	Addison-Wesley.	ISBN
Alur,	Deepak;	Elisabeth	Freeman,	Kathy	Sierra,	and	Bert	Bates	(2004).	Head	First	Design	Patterns.	O'Reilly	Media.	
Gabriel,	Richard	(1996)	(PDF).	Patterns	of	Software:	Tales	From	The	Software	Community.	Oxford	University	Press.	pp.	235.	
http://www.dreamsongs.com/NewFiles/PatternsOfSoftware.pdf.
Gamma,	Erich;	Richard	Helm,	Ralph	Johnson,	and	John	Vlissides	(1995).	Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software
Hohpe,	Gregor;	Bobby	Woolf	(2003).	Enterprise	Integration	Patterns:	Designing,	Building,	and	Deploying	Messaging	Solutions
Holub,	Allen	(2004).	Holub	on	Patterns.	Apress.	ISBN	1-59059-388-X.
Kircher,	Michael;	Markus	Völter	and	Uwe	Zdun	(2005).	Remoting	Patterns:	Foundations	of	Enterprise,	Internet	and	Realtime	Distributed	Object	Middleware
ISBN	0-470-85662-9.
Larman,	Craig	(2005).	Applying	UML	and	Patterns.	Prentice	Hall.	ISBN	0-13-148906-2.
Liskov,	Barbara;	John	Guttag	(2000).	Program	Development	in	Java:	Abstraction,	Specification,	and	Object-Oriented	Design.
Manolescu,	Dragos;	Markus	Voelter	and	James	Noble	(2006).	Pattern	Languages	of	Program	Design	5.	Addison-Wesley.	
Marinescu,	Floyd	(2002).	EJB	Design	Patterns:	Advanced	Patterns,	Processes	and	Idioms.	John	Wiley	&	Sons.	ISBN
Martin,	Robert	Cecil;	Dirk	Riehle	and	Frank	Buschmann	(1997).	Pattern	Languages	of	Program	Design	3.	Addison-Wesley.	
Mattson,	Timothy	G;	Beverly	A.	Sanders	and	Berna	L.	Massingill	(2005).	Patterns	for	Parallel	Programming.	Addison-Wesley.	
Shalloway,	Alan;	James	R.	Trott	(2001).	Design	Patterns	Explained,	Second	Edition:	A	New	Perspective	on	Object-Oriented	Design
Vlissides,	John	M.	(1998).	Pattern	Hatching:	Design	Patterns	Applied.	Addison-Wesley.	ISBN	0-201-43293-5.
Weir,	Charles;	James	Noble	(2000).	Small	Memory	Software:	Patterns	for	systems	with	limited	memory.	Addison-Wesley.	

Web	sites

"History	of	Patterns".	Portland	Pattern	Repository.	http://www.c2.com/cgi-bin/wiki?HistoryOfPatterns.	Retrieved	2005-07-28
"Are	Design	Patterns	Missing	Language	Features?".	Cunningham	&	Cunningham,	Inc..	http://www.c2.com/cgi/wiki?AreDesignPatternsMissingLanguageFeatures
20.
"Show	Trial	of	the	Gang	of	Four".	Cunningham	&	Cunningham,	Inc..	http://www.c2.com/cgi/wiki?ShowTrialOfTheGangOfFour

Further	Reading

https://en.wikipedia.org/wiki/Christopher_Alexander
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/978-0195019193
https://en.wikipedia.org/wiki/Erich_Gamma
https://en.wikipedia.org/wiki/Frank_Buschmann
https://en.wikibooks.org/wiki/Special:BookSources/0-471-95869-7
https://en.wikipedia.org/wiki/Douglas_C._Schmidt
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-471-60695-2
https://en.wikipedia.org/wiki/Martin_Fowler
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/978-0321127426
https://en.wikipedia.org/wiki/Kent_Beck
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/978-0321413093
https://en.wikipedia.org/wiki/Kent_Beck
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-471-49828-9
https://en.wikipedia.org/wiki/Jim_Coplien
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-201-60734-4
https://en.wikipedia.org/wiki/Jim_Coplien
https://en.wikipedia.org/wiki/Martin_Fowler
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-201-89542-0
https://en.wikipedia.org/wiki/Martin_Fowler
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/978-0321127426
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Richard_P._Gabriel
http://www.dreamsongs.com/NewFiles/PatternsOfSoftware.pdf
http://www.dreamsongs.com/NewFiles/PatternsOfSoftware.pdf
https://en.wikipedia.org/wiki/Erich_Gamma
https://en.wikipedia.org/wiki/Allen_I._Holub
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/1-59059-388-X
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-470-85662-9
https://en.wikipedia.org/wiki/Craig_Larman
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-13-148906-2
https://en.wikipedia.org/wiki/Barbara_Liskov
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Robert_Cecil_Martin
https://en.wikipedia.org/wiki/John_Vlissides
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-201-43293-5
http://www.cix.co.uk/~smallmemory/
http://www.c2.com/cgi-bin/wiki?HistoryOfPatterns
http://www.c2.com/cgi-bin/wiki?HistoryOfPatterns
http://www.c2.com/cgi/wiki?AreDesignPatternsMissingLanguageFeatures
http://www.c2.com/cgi/wiki?AreDesignPatternsMissingLanguageFeatures
http://www.c2.com/cgi/wiki?ShowTrialOfTheGangOfFour
http://www.c2.com/cgi/wiki?ShowTrialOfTheGangOfFour

www.manaraa.com

"Design	Patterns	in	Modern	Day	Software	Factories	(WCSF)".	XO	Software,	Ltd.	http://www.xosoftware.co.uk/Articles/WCSFDesignPatterns/
"STL	Design	Patterns	II,".	EventHelix.com	Inc..	http://www.eventhelix.com/RealtimeMantra/Patterns/stl_design_patterns_2.htm
"Embedded	Design	Patterns,".	EventHelix.com	Inc..	http://www.eventhelix.com/RealtimeMantra/Patterns/.	Retrieved	2011-03-08
"Enterprise	Integration	Patterns".	Gregor	Hohpe	and	Bobby	Woolf,	Addison-Wesley.	http://www.enterpriseintegrationpatterns.com/

Directory	of	websites	that	provide	pattern	catalogs	(http://hillside.net/patterns/onlinepatterncatalog.htm)	at	hillside.net.
Ward	Cunningham's	Portland	Pattern	Repository.
Messaging	Design	Pattern	(http://jt.dev.java.net/files/documents/5553/150311/designPatterns.pdf)	Published	in	the	17th	conference	on	Pattern	Languages	of	Programs	(PLoP	2010).
Patterns	and	Anti-Patterns	(http://www.dmoz.org/Computers/Programming/Methodologies/Patterns_and_Anti-Patterns//)
PerfectJPattern	Open	Source	Project	(http://perfectjpattern.sourceforge.net)	Design	Patterns	library	that	aims	to	provide	full	or	partial	componentized	version	of	all	known	Patterns
in	Java.
Lean	Startup	Business	Model	Pattern	(http://torgronsund.wordpress.com/2010/01/06/lean-startup-business-model-pattern/)
models
Jt	(http://jt.dev.java.net)	J2EE	Pattern	Oriented	Framework
Printable	Design	Patterns	Quick	Reference	Cards	(http://www.mcdonaldland.info/2007/11/28/40/)
101	Design	Patterns	&	Tips	for	Developers	(http://sourcemaking.com/design-patterns-and-tips)
On	Patterns	and	Pattern	Languages	(http://media.wiley.com/product_data/excerpt/28/04700590/0470059028.pdf)
Patterns	for	Scripted	Applications	(http://www.doc.ic.ac.uk/~np2/patterns/scripting/)
Design	Patterns	Reference	(http://www.oodesign.com/)	at	oodesign.com
Design	Patterns	for	70%	programmers	in	the	world	(http://www.slideshare.net/saurabh.net/design-patterns-for-70-of-programmers-in-the-world)

If	design	patterns	are	the	good	guys,	then	the	anti-patterns	are	the	bad	guys.	And	sometimes	a	good	guy	can	turn	into	a	bad	guy.	This	happens	in	Hollywood	movies,	but	it	also	happens
in	software	engineering.

The	"golden	hammer"	is	a	favorite	notion	of	this	problem:	you	learned	to	use	a	tool	in	one	context	(the	golden	hammer),	and	now	because	you	are	so	proud	having	learned	how	to	use	this
complicated	tool,	all	of	a	sudden	you	see	golden	nails	everywhere.

A	good	example	is	the	Singleton	pattern:	it	is	so	easy	that	it	is	the	first	pattern	most	beginning	software	engineers	understand	and	henceforth,	since	presumably	it	is	a	good	guy,	they	will
use	 it	 at	 every	possible	 occasion.	However,	 the	problem	with	 the	Singleton	 is	 that	 it	 violates	 information	hiding
engineering,	and	it	should	be	violated	only	when	there	is	a	really	good	reason	for	it.	And	just	having	learned	about	the	Singleton	pattern	is	not!

In	software	engineering,	an	anti-pattern	 is	a	pattern	that	may	be	commonly	used	but	is	 ineffective	and/or	counterproductive	in	practice.
Koenig,[3]	inspired	by	Gang	of	Four's	book	Design	Patterns,	which	developed	the	concept	of	design	patterns	in	the	software	field.	The	term	was	widely	popularized	three	years	later	by	the
book	AntiPatterns,[4]	which	extended	the	use	of	the	term	beyond	the	field	of	software	design	and	into	general	social	interaction.	According	to	the	authors	of	the	latter,	there	must	be	at
least	two	key	elements	present	to	formally	distinguish	an	actual	anti-pattern	from	a	simple	bad	habit,	bad	practice,	or	bad	idea:

Some	repeated	pattern	of	action,	process	or	structure	that	initially	appears	to	be	beneficial,	but	ultimately	produces	more	bad	consequences	than	beneficial	results,	and
A	refactored	solution	exists	that	is	clearly	documented,	proven	in	actual	practice	and	repeatable.

By	formally	describing	repeated	mistakes,	one	can	recognize	the	forces	that	lead	to	their	repetition	and	learn	how	others	have	refactored	themselves	out	of	these	broken	patterns.

To	understand	anti-patterns	a	little	better,	let	us	take	a	look	at	a	few	examples.	By	studying	them	you	may	recognize	some	violation	against	software	engineering	principles	you	may	have
committed	yourself	at	one	point	in	time.	Some	of	these	anti-patterns	have	very	funny	names.

We	have	talked	about	this	one:	the	first	pattern	you	understood	immediately,	and	you	used	it	heavily.	But	beware	it	violates	information	hiding.	Therefore	the	simple	rule:	when	in	doubt
don't	use	it.	My	experience	is	that	the	larger	the	project,	the	more	Singletons	show	up.

How	do	you	detect	Singletons?	This	is	very	easy:	look	at	the	class	diagram.	All	classes	that	have	references	to	themselves	(or	their	base	class)	are	potential	Singletons.	If	you	want	to	get
rid	of	them,	Kerievsky	shows	you	the	medicine	that	cures	this	disease.	[5]

Although	very	popular	once,	 in	a	modern	object-oriented	 language	there	 is	no	more	space	 for	 functional	decomposition.	 It	 is	a	 remanent	of	procedural	 languages	 such	as	C	or	Pascal.
Usually	it	indicates	old	software	that	was	integrated	into	a	new	project	or	migrated.

This	anti-pattern	reveals	itself	in	three	ways:	The	names	of	classes	sound	like	function	names	(e.g.	CalculateInterest).	Or	the	classes	only	have	one	action,	i.e.,	they	only	do	one	thing.	Or

External	Links

Anti-Patterns

Anti-Patterns	and	Code	Smells

Examples	of	Anti-Patterns

Singleton	Overuse

Functional	Decomposition

http://www.xosoftware.co.uk/Articles/WCSFDesignPatterns/
http://www.xosoftware.co.uk/Articles/WCSFDesignPatterns/
http://www.eventhelix.com/RealtimeMantra/Patterns/stl_design_patterns_2.htm
http://www.eventhelix.com/RealtimeMantra/Patterns/stl_design_patterns_2.htm
http://www.eventhelix.com/RealtimeMantra/Patterns/
http://www.eventhelix.com/RealtimeMantra/Patterns/
http://www.enterpriseintegrationpatterns.com/
http://www.enterpriseintegrationpatterns.com/
http://hillside.net/patterns/onlinepatterncatalog.htm
http://c2.com/cgi/wiki?CategoryPattern
http://jt.dev.java.net/files/documents/5553/150311/designPatterns.pdf
http://www.dmoz.org/Computers/Programming/Methodologies/Patterns_and_Anti-Patterns//
http://perfectjpattern.sourceforge.net/
http://torgronsund.wordpress.com/2010/01/06/lean-startup-business-model-pattern/
http://jt.dev.java.net/
http://www.mcdonaldland.info/2007/11/28/40/
http://sourcemaking.com/design-patterns-and-tips
http://media.wiley.com/product_data/excerpt/28/04700590/0470059028.pdf
http://www.doc.ic.ac.uk/~np2/patterns/scripting/
http://www.oodesign.com/
http://www.slideshare.net/saurabh.net/design-patterns-for-70-of-programmers-in-the-world
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-171
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-172
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Kerievsky-173

www.manaraa.com

This	anti-pattern	reveals	itself	in	three	ways:	The	names	of	classes	sound	like	function	names	(e.g.	CalculateInterest).	Or	the	classes	only	have	one	action,	i.e.,	they	only	do	one	thing.	Or
all	class	attributes	are	private	(which	is	fine)	but	they	are	only	used	within	the	class.	To	detect	this	anti-pattern	you	can	use	a	tool	such	as	SourceMonitor.
also	lists	the	functions.

People	like	this	anti-pattern	because	of	its	name.	What	it	is,	are	classes	that	briefly	appear	to	only	disappear	into	oblivion.	Either	nobody	knows	what	they	really	do,	or	they	have	very
limited	functionality.	Usually	they	are	not	needed	or	can	be	absorbed	in	other	classes.

Usually	one	recognizes	this	anti-pattern	by	class	names	that	end	in	’*controller’	or	’*manager’.	Again	a	tool	such	as	SourceMonitor	can	help	to	find	this	anti-pattern.

Often	a	consequence	of	"agile"	approaches	where	cogitating	is	preferred	to	Design.

Spaghetti	code	is	like	the	noodles:	it	is	very	long.	Although	the	noodles	are	delicious,	code	the	longer	it	gets	is	not.

SourceMonitor	can	help	you	find	this	pattern,	you	simply	look	for	methods	with	many	lines	of	code.	Refactoring	usually	is	the	cure	here.

A	blob	is	a	class	with	a	lot	of	attributes	and	methods.	Quite	often	these	are	not	even	related.	You	can	detect	this	smell	with	your	favorite	code	analysis	tool,	by	listing	classes	with	lots	of
attributes	and	methods	or	many	lines	of	code.	Usually	splitting	this	class	into	several	smaller	classes	will	help	here.

As	the	name	 implies,	somebody	copied	some	code	 from	some	place	to	another	place.	 It	 is	the	simplest	way	to	duplicate	 functionality,	but	 it	should	be	avoided	 for	many	reasons.	The
simplest	solution	is	to	turn	the	code	into	a	method	instead,	or	use	inheritance.

To	detect	almost	identical	code	you	can	use	a	tool	like	PMD’s	Tool	Copy/Paste	Detector.[7][8]

What	is	lava	flow?	"A	lava	flow	is	a	moving	outpouring	of	lava,	which	is	created	during	a	non-explosive	effusive	eruption.	When	it	has	stopped	moving,	lava	solidifies	to	form	igneous
rock."[9]	In	software	engineering	it	means	that	the	code	is	ancient,	nobody	has	touched	it	for	eons,	and	nobody	has	the	guts	to	touch	it	(never	touch	a	working	class...).

You	can	find	these	classes	by	using	your	source	control	system.	Simply	list	those	classes	that	have	not	been	checked	out	and	modified	for	a	long	time.

Code	smells	are	similar	to	anti-patterns,	but	not	quite	as	formal.	If	code	smells,	then	that	smell	can	be	o.k.	(like	some	cheese)	or	it	can	be	bad,	possibly	indicating	a	deeper	problem.	Kent
Beck	introduced	the	idea	in	the	late	1990s	and	Martin	Fowler	made	it	popular	in	his	book	Refactoring.	Improving	the	Design	of	Existing	Code
Checkstyle	or	PMD	to	find	bad	smells.	Usually	refactoring	is	used	to	remove	the	offending	odor.	Martin	Fowler	and	Joshua	Kerievsky,	among	others,	provide	the	appropriate	refactorings.

This	smell	is	very	similar	to	the	Copy	and	Paste	anti-pattern.	You	can	use	the	PMD	Tool	Copy/Paste	Detector	[7]	to	find	the	problematic	areas.

Related	 to	 the	Spaghetti	 anti-pattern,	you	 can	 find	 it	using	SourceMonitor	when	 sorting	 classes	 according	 to	 ’Avg	Stmts/Meth’.	Methods	 that	have	more	 then	50	 lines	 are	definitely
suspicious.

In	the	current	Victorian	age	of	information	hiding,	naturally	indecent	exposure	is	a	bad	thing.	If	a	class	has	too	many	methods,	or,	god	forbid,	any	public	attributes	then	we	talk	about
indecent	exposure.	You	find	this	smell	by	checking	for	public	methods	of	classes.	If	a	class	has	more	than	50%	public	methods,	this	may	not	conform	to	the	information	hiding	policy.

Reminds	me	of	the	Poltergeist	anti-pattern:	this	is	a	class	that	does	so	little	that	it	has	no	reason	for	existence.	Try	to	absorb	it	into	another	class.	To	detect	this	smell	use	SourceMonitor:
Sort	'Methods/Class'	and	look	for	classes	that	have	fewer	than	two	methods	or	look	for	classes	with	very	few	lines	of	code.	They	are	suspect	of	being	lazy.

A	large	class	is	the	opposite	of	a	lazy	class.	You	find	it	similarily,	look	for	classes	with	too	many	methods,	or	too	many	statements.	Usually	a	class	should	not	have	more	than	30	methods
or	more	than	400	statements.	Also	class	with	too	many	attributes	could	be	large	classes.	Kerievsky	shows	several	possible	ways	of	reducing	this	smell.

Really	means	not	coding	to	code	conventions.	Look	up	Meyer,	MISRA	etc.

There	are	many	known	anti-patterns.	A	list	and	brief	description	of	some	is	provided	for	your	entertainment.

Analysis	paralysis:	Devoting	disproportionate	effort	to	the	analysis	phase	of	a	project
Cash	cow:	A	profitable	legacy	product	that	often	leads	to	complacency	about	new	products
Design	by	committee:	The	result	of	having	many	contributors	to	a	design,	but	no	unifying	vision
Escalation	of	commitment:	Failing	to	revoke	a	decision	when	it	proves	wrong
Management	by	perkele:	Authoritarian	style	of	management	with	no	tolerance	of	dissent
Matrix	Management:	Unfocused	organizational	structure	that	results	in	divided	loyalties	and	lack	of	direction

Poltergeist

Spaghetti

Blob

Copy	and	Paste

Lava	Flow

Code	Smells

Duplicate	Code

Long	Method

Indecent	Exposure

Lazy	Class

Large	Class

Known	Anti-Patterns

Organizational	anti-patterns

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-PMD-175
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-176
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-177
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-PMD-175

www.manaraa.com

Moral	hazard:	Insulating	a	decision-maker	from	the	consequences	of	his	or	her	decision
Mushroom	management:	Keeping	employees	uninformed	and	misinformed	(kept	in	the	dark	and	fed	manure)
Stovepipe	or	Silos:	A	structure	that	supports	mostly	up-down	flow	of	data	but	inhibits	cross	organizational	communication
Vendor	lock-in:	Making	a	system	excessively	dependent	on	an	externally	supplied	component[11]

Death	march:	Everyone	knows	that	the	project	is	going	to	be	a	disaster	–	except	the	CEO.	However,	the	truth	remains	hidden	and	the	project	is	artificially	kept	alive	until	the	Day
Zero	finally	comes	("Big	Bang").	Alternative	definition:	Employees	are	pressured	to	work	late	nights	and	weekends	on	a	project	with	an	unreasonable	deadline.
Groupthink:	During	groupthink,	members	of	the	group	avoid	promoting	viewpoints	outside	the	comfort	zone	of	consensus	thinking
Smoke	and	mirrors:	Demonstrating	how	unimplemented	functions	will	appear
Software	bloat:	Allowing	successive	versions	of	a	system	to	demand	ever	more	resources
Waterfall	model:	An	older	method	of	software	development	that	inadequately	deals	with	unanticipated	change

Bystander	apathy:	When	a	requirement	or	design	decision	is	wrong,	but	the	people	who	notice	this	do	nothing	because	it	affects	a	larger	number	of	people

Abstraction	inversion:	Not	exposing	implemented	functionality	required	by	users,	so	that	they	re-implement	it	using	higher	level	functions
Ambiguous	viewpoint:	Presenting	a	model	(usually	Object-oriented	analysis	and	design	(OOAD))	without	specifying	its	viewpoint
Big	ball	of	mud:	A	system	with	no	recognizable	structure
Database-as-IPC:	Using	a	database	as	the	message	queue	for	routine	interprocess	communication	where	a	much	more	lightweight	mechanism	would	be	suitable
Gold	plating:	Continuing	to	work	on	a	task	or	project	well	past	the	point	at	which	extra	effort	is	adding	value
Inner-platform	effect:	A	system	so	customizable	as	to	become	a	poor	replica	of	the	software	development	platform
Input	kludge:	Failing	to	specify	and	implement	the	handling	of	possibly	invalid	input
Interface	bloat:	Making	an	interface	so	powerful	that	it	is	extremely	difficult	to	implement
Magic	pushbutton:	Coding	implementation	logic	directly	within	interface	code,	without	using	abstraction
Race	hazard:	Failing	to	see	the	consequence	of	different	orders	of	events
Stovepipe	system:	A	barely	maintainable	assemblage	of	ill-related	components

Anemic	Domain	Model:	The	use	of	domain	model	without	any	business	logic.	The	domain	model's	objects	cannot	guarantee	their	correctness	at	any	moment,	because	their	validation
and	mutation	logic	is	placed	somewhere	outside	(most	likely	in	multiple	places).
BaseBean:	Inheriting	functionality	from	a	utility	class	rather	than	delegating	to	it
Call	super:	Requiring	subclasses	to	call	a	superclass's	overridden	method
Circle-ellipse	problem:	Subtyping	variable-types	on	the	basis	of	value-subtypes
Circular	dependency:	Introducing	unnecessary	direct	or	indirect	mutual	dependencies	between	objects	or	software	modules
Constant	interface:	Using	interfaces	to	define	constants
God	object:	Concentrating	too	many	functions	in	a	single	part	of	the	design	(class)
Object	cesspool:	Reusing	objects	whose	state	does	not	conform	to	the	(possibly	implicit)	contract	for	re-use
Object	orgy:	Failing	to	properly	encapsulate	objects	permitting	unrestricted	access	to	their	internals
Poltergeists:	Objects	whose	sole	purpose	is	to	pass	information	to	another	object
Sequential	coupling:	A	class	that	requires	its	methods	to	be	called	in	a	particular	order
Yo-yo	problem:	A	structure	(e.g.,	of	inheritance)	that	is	hard	to	understand	due	to	excessive	fragmentation

Accidental	complexity:	Introducing	unnecessary	complexity	into	a	solution
Action	at	a	distance:	Unexpected	interaction	between	widely	separated	parts	of	a	system
Blind	faith:	Lack	of	checking	of	(a)	the	correctness	of	a	bug	fix	or	(b)	the	result	of	a	subroutine
Boat	anchor:	Retaining	a	part	of	a	system	that	no	longer	has	any	use

Project	management	anti-patterns

Analysis	anti-patterns

Software	design	anti-patterns

Object-oriented	design	anti-patterns

Programming	anti-patterns

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-179

www.manaraa.com

Busy	spin:	Consuming	CPU	while	waiting	for	something	to	happen,	usually	by	repeated	checking	instead	of	messaging
Caching	failure:	Forgetting	to	reset	an	error	flag	when	an	error	has	been	corrected
Cargo	cult	programming:	Using	patterns	and	methods	without	understanding	why
Coding	by	exception:	Adding	new	code	to	handle	each	special	case	as	it	is	recognized
Error	hiding:	Catching	an	error	message	before	it	can	be	shown	to	the	user	and	either	showing	nothing	or	showing	a	meaningless	message
Hard	code:	Embedding	assumptions	about	the	environment	of	a	system	in	its	implementation
Lava	flow:	Retaining	undesirable	(redundant	or	low-quality)	code	because	removing	it	is	too	expensive	or	has	unpredictable	consequences
Loop-switch	sequence:	Encoding	a	set	of	sequential	steps	using	a	switch	within	a	loop	statement
Magic	numbers:	Including	unexplained	numbers	in	algorithms
Magic	strings:	Including	literal	strings	in	code,	for	comparisons,	as	event	types	etc.
Soft	code:	Storing	business	logic	in	configuration	files	rather	than	source	code[14]

Spaghetti	code:	Programs	whose	structure	is	barely	comprehensible,	especially	because	of	misuse	of	code	structures

Copy	and	paste	programming:	Copying	(and	modifying)	existing	code	rather	than	creating	generic	solutions
Golden	hammer:	Assuming	that	a	favorite	solution	is	universally	applicable	(See:	Silver	Bullet)
Improbability	factor:	Assuming	that	it	is	improbable	that	a	known	error	will	occur
Not	Invented	Here	(NIH)	syndrome:	The	tendency	towards	reinventing	the	wheel	(Failing	to	adopt	an	existing,	adequate	solution)
Premature	optimization:	Coding	early-on	for	perceived	efficiency,	sacrificing	good	design,	maintainability,	and	sometimes	even	real-world	efficiency
Programming	by	permutation	(or	"programming	by	accident"):	Trying	to	approach	a	solution	by	successively	modifying	the	code	to	see	if	it	works
Reinventing	the	wheel:	Failing	to	adopt	an	existing,	adequate	solution
Reinventing	the	square	wheel:	Failing	to	adopt	an	existing	solution	and	instead	adopting	a	custom	solution	which	performs	much	worse	than	the	existing	one
Silver	bullet:	Assuming	that	a	favorite	technical	solution	can	solve	a	larger	process	or	problem
Tester	Driven	Development:	Software	projects	in	which	new	requirements	are	specified	in	bug	reports

Dependency	hell:	Problems	with	versions	of	required	products
DLL	hell:	Inadequate	management	of	dynamic-link	libraries	(DLLs),	specifically	on	Microsoft	Windows
Extension	conflict:	Problems	with	different	extensions	to	pre-Mac	OS	X	versions	of	the	Mac	OS	attempting	to	patch	the	same	parts	of	the	operating	system
JAR	hell:	Overutilization	of	the	multiple	JAR	files,	usually	causing	versioning	and	location	problems	because	of	misunderstanding	of	the	Java	class	loading	model

1.	 Budgen,	D.	(2003).	Software	design.	Harlow,	Eng.:	Addison-Wesley.	p.	225.	ISBN	0-201-72219-4.	http://books.google.com/?id=bnY3vb606bAC&pg=PA225&dq=%22anti-
pattern%22+date:1990-2003.	"As	described	in	Long	(2001),	design	anti-patterns	are	'obvious,	but	wrong,	solutions	to	recurring	problems'."

2.	 Scott	W.	Ambler	(1998).	Process	patterns:	building	large-scale	systems	using	object	technology.	Cambridge,	UK:	Cambridge	University	Press.	p.	4.	
http://books.google.com/?id=qJJk2yEeoZoC&pg=PA4&dq=%22anti-pattern%22+date:1990-2001.	"...common	approaches	to	solving	recurring	problems	that	prove	to	be	ineffective.
These	approaches	are	called	antipatterns."

3.	 Koenig,	Andrew	(March/April	1995).	"Patterns	and	Antipatterns".	Journal	of	Object-Oriented	Programming	8,	(1):	46–48.
patterns	handbook:	techniques,	strategies,	and	applications.	Cambridge,	U.K.:	Cambridge	University	Press.	p.	387.	
id=HBAuixGMYWEC&pg=PT1&dq=0-521-64818-1.	"Anti-pattern	is	just	like	pattern,	except	that	instead	of	solution	it	gives	something	thats	looks	superficially	like	a	solution,	but
isn't	one."

4.	 Brown,	William	J.;	Raphael	C.	Malveau,	Hays	W.	"Skip"	McCormick,	Thomas	J.	Mowbray	(1998).	AntiPatterns:	Refactoring	Software,	Architectures,	and	Projects	in	Crisis
Wiley	&	Sons,	ltd.	ISBN	0471197130.

5.	 Kerievsky,	Joshua	(2004).	Refactoring	to	Patterns.	Addison-Wesley	Professional.	ISBN	0321213351.
6.	 http://www.campwoodsw.com/sourcemonitor.html	SourceMonitor
7.	 http://pmd.sourceforge.net/cpd.html	PMD
8.	 http://www.onjava.com/pub/a/onjava/2003/03/12/pmd_cpd.html	Detecting	Duplicate	Code	with	PMD’s	CPD
9.	 http://en.wikipedia.org/wiki/Lava	Lava
10.	 Fowler,	Martin	(1999).	Refactoring.	Improving	the	Design	of	Existing	Code.	Addison-Wesley.	ISBN	0-201-48567-2

Methodological	anti-patterns

Configuration	management	anti-patterns

References

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-182
http://books.google.com/?id=bnY3vb606bAC&pg=PA225&dq=%22anti-pattern%22+date:1990-2003
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-201-72219-4
http://books.google.com/?id=bnY3vb606bAC&pg=PA225&dq=%22anti-pattern%22+date:1990-2003
http://books.google.com/?id=qJJk2yEeoZoC&pg=PA4&dq=%22anti-pattern%22+date:1990-2001
http://books.google.com/?id=qJJk2yEeoZoC&pg=PA4&dq=%22anti-pattern%22+date:1990-2001
http://books.google.com/?id=HBAuixGMYWEC&pg=PT1&dq=0-521-64818-1
http://books.google.com/?id=HBAuixGMYWEC&pg=PT1&dq=0-521-64818-1
https://en.wikipedia.org/wiki/William_J._Brown_(writer)
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0471197130
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0321213351
http://www.campwoodsw.com/sourcemonitor.html
http://pmd.sourceforge.net/cpd.html
http://www.onjava.com/pub/a/onjava/2003/03/12/pmd_cpd.html
http://en.wikipedia.org/wiki/Lava
https://en.wikipedia.org/wiki/Martin_Fowler
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-201-48567-2

www.manaraa.com

11.	 Vendor	Lock-In	(http://www.antipatterns.com/vendorlockin.htm)	at	antipatterns.com
12.	 Lava	Flow	(http://www.antipatterns.com/lavaflow.htm)	at	antipatterns.com
13.	 "Undocumented	'lava	flow'	antipatterns	complicate	process".	Icmgworld.com.	2002-01-14.	http://www.icmgworld.com/corp/news/Articles/RS/jan_0202.asp
14.	 Papadimoulis,	Alex	(2007-04-10).	"Soft	Coding".	Worsethanfailure.com.	http://worsethanfailure.com/Articles/Soft_Coding.aspx

Books

Laplante,	Phillip	A.;	Colin	J.	Neill	(2005).	Antipatterns:	Identification,	Refactoring	and	Management.	Auerbach	Publications.	
Brown,	William	J.;	Raphael	C.	Malveau,	Hays	W.	"Skip"	McCormick,	Scott	W.	Thomas,	Theresa	Hudson	(ed).	(2000).	
ISBN	0-471-36366-9.
Brown,	William	J.;	Raphael	C.	Malveau,	Hays	W.	"Skip"	McCormick,	Thomas	J.	Mowbray	(1998).	AntiPatterns:	Refactoring	Software,	Architectures,	and	Projects	in	Crisis
Wiley	&	Sons,	ltd.	ISBN	0471197130.
Kerievsky,	Joshua	(2004).	Refactoring	to	Patterns.	Addison-Wesley	Professional.	ISBN	0321213351.
Feathers,	Michael	(2004).	Working	Effectively	with	Legacy	Code.	Prentice	Hall.	ISBN	0131177052.

Web	sites

"The	Bad	Code	Spotter’s	Guide".	Diomidis	Spinellis.	http://www.informit.com/articles/article.aspx?p=457502.	Retrieved	2011-03-09

Anti-pattern	(http://c2.com/cgi/wiki?AntiPattern)	at	WikiWikiWeb
Anti-patterns	catalog	(http://c2.com/cgi/wiki?AntiPatternsCatalog)
AntiPatterns.com	(http://www.antipatterns.com)	Web	site	for	the	AntiPatterns	book
Patterns	of	Toxic	Behavior	(http://www.personal.psu.edu/cjn6/Personal/Antipatterns-%20Patterns%20of%20Toxic%20Behavior.htm)
CodeSmell	at	c2.com	(http://c2.com/cgi/wiki?CodeSmell)
Taxonomy	of	code	smells	(http://blog.iandavis.com/2004/11/taxonomy-of-code-smells/)

Implementation

Computer	programming	(often	shortened	to	programming	or	coding)	is	the	process	of	designing,	writing,	testing,	debugging	/	troubleshooting,	and	maintaining	the	source	code
of	computer	programs.	This	source	code	is	written	in	a	programming	language.	The	purpose	of	programming	is	to	create	a	program	that	exhibits	a	certain	desired	behaviour.	The	process	of
writing	source	code	often	requires	expertise	in	many	different	subjects,	including	knowledge	of	the	application	domain,	specialized	algorithms	and	formal	logic.

Hoc	 and	Nguyen-Xuan	define	 computer	 programming	 as	 "the	 process	 of	 transforming	 a	mental	 plan	 in	 familiar	 terms	 into	 one	 compatible	with	 the	 computer."	
programming	is	the	craft	of	transforming	requirements	into	something	that	a	computer	can	execute.

Within	software	engineering,	programming	(the	implementation)	is	regarded	as	one	phase	in	a	software	development	process.

There	is	an	ongoing	debate	on	the	extent	to	which	the	writing	of	programs	is	an	art,	a	craft	or	an	engineering	discipline.
application	of	all	three,	with	the	goal	of	producing	an	efficient	and	evolvable	software	solution	(the	criteria	for	"efficient"	and	"evolvable"	vary	considerably).	The	discipline	differs	from
many	other	technical	professions	 in	that	programmers,	 in	general,	do	not	need	to	be	 licensed	or	pass	any	standardized	(or	governmentally	regulated)	certification	tests	 in	order	to	call
themselves	"programmers"	or	even	"software	engineers."	However,	representing	oneself	as	a	"Professional	Software	Engineer"	without	a	license	from	an	accredited	institution	is	 illegal	 in
many	parts	of	 the	world.	However,	because	 the	discipline	 covers	many	areas,	which	may	or	may	not	 include	 critical	 applications,	 it	 is	debatable	whether	 licensing	 is	 required	 for	 the
profession	as	a	whole.	In	most	cases,	the	discipline	is	self-governed	by	the	entities	which	require	the	programming,	and	sometimes	very	strict	environments	are	defined	(e.g.	United	States
Air	Force	use	of	AdaCore	and	security	clearance).

Another	ongoing	debate	is	the	extent	to	which	the	programming	language	used	in	writing	computer	programs	affects	the	form	that	the	final	program	takes.	This	debate	is	analogous	to
that	 surrounding	 the	 Sapir–Whorf	 hypothesis	 [3]	 in	 linguistics,	 which	 postulates	 that	 a	 particular	 spoken	 language's	 nature	 influences	 the	 habitual	 thought	 of	 its	 speakers.	 Different
language	patterns	yield	different	patterns	of	thought.	This	idea	challenges	the	possibility	of	representing	the	world	perfectly	with	language,	because	it	acknowledges	that	the	mechanisms	of
any	language	condition	the	thoughts	of	its	speaker	community.

The	Antikythera	mechanism	from	ancient	Greece	was	a	calculator	utilizing	gears	of	various	sizes	and	configuration	to	determine	its	operation,
in	lunar-to-solar	calendars,	and	which	is	consistent	for	calculating	the	dates	of	the	Olympiads.[5]	Al-Jazari	built	programmable	Automata	in	1206.	One	system	employed	in	these	devices
was	the	use	of	pegs	and	cams	placed	into	a	wooden	drum	at	specific	locations.	which	would	sequentially	trigger	levers	that	in	turn	operated	percussion	instruments.	The	output	of	this

Further	Reading

External	Links

Introduction

Definition

Overview

History

http://www.antipatterns.com/vendorlockin.htm
http://www.antipatterns.com/lavaflow.htm
http://www.icmgworld.com/corp/news/Articles/RS/jan_0202.asp
http://www.icmgworld.com/corp/news/Articles/RS/jan_0202.asp
http://worsethanfailure.com/Articles/Soft_Coding.aspx
http://worsethanfailure.com/Articles/Soft_Coding.aspx
https://en.wikipedia.org/wiki/William_J._Brown_(writer)
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-471-36366-9
https://en.wikipedia.org/wiki/William_J._Brown_(writer)
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0471197130
https://en.wikipedia.org/wiki/Joshua_Kerievsky
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0321213351
https://en.wikipedia.org/wiki/Michael_Feathers
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0131177052
http://www.informit.com/articles/article.aspx?p=457502
http://www.informit.com/articles/article.aspx?p=457502
http://c2.com/cgi/wiki?AntiPattern
http://c2.com/cgi/wiki?AntiPatternsCatalog
http://www.antipatterns.com/
http://www.personal.psu.edu/cjn6/Personal/Antipatterns-%20Patterns%20of%20Toxic%20Behavior.htm
http://c2.com/cgi/wiki?CodeSmell
http://blog.iandavis.com/2004/11/taxonomy-of-code-smells/
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-185
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-187

www.manaraa.com

device	was	a	small	drummer	playing	various	rhythms	and	drum	patterns.[6][7]	The	Jacquard	Loom,	which	Joseph	Marie	Jacquard	developed	in	1801,	uses	a	series	of	pasteboard	cards	with
holes	punched	in	them.	The	hole	pattern	represented	the	pattern	that	the	loom	had	to	follow	in	weaving	cloth.	The	loom	could	produce	entirely	different	weaves	using	different	sets	of
cards.	Charles	Babbage	adopted	the	use	of	punched	cards	around	1830	to	control	his	Analytical	Engine.	The	synthesis	of	numerical	calculation,	predetermined
operation	and	output,	along	with	a	way	to	organize	and	input	instructions	in	a	manner	relatively	easy	for	humans	to	conceive	and	produce,	led	to	the	modern
development	of	computer	programming.	Development	of	computer	programming	accelerated	through	the	Industrial	Revolution.
In	the	late	1880s,	Herman	Hollerith	invented	the	recording	of	data	on	a	medium	that	could	then	be	read	by	a	machine.	Prior	uses	of	machine	readable	media,
above,	had	been	for	control,	not	data.	"After	some	initial	trials	with	paper	tape,	he	settled	on	punched	cards..."[8]	To	process	these	punched	cards,	first	known	as
"Hollerith	 cards"	 he	 invented	 the	 tabulator,	 and	 the	 keypunch	machines.	 These	 three	 inventions	 were	 the	 foundation	 of	 the	 modern	 information	 processing
industry.	In	1896	he	founded	the	Tabulating	Machine	Company	(which	later	became	the	core	of	IBM).	The	addition	of	a	control	panel	(plugboard)	to	his	1906
Type	I	Tabulator	allowed	 it	to	do	different	 jobs	without	having	to	be	physically	rebuilt.	By	the	 late	1940s,	there	were	a	variety	of	plug-board	programmable
machines,	 called	 unit	 record	 equipment,	 to	 perform	 data-processing	 tasks	 (card	 reading).	 Early	 computer	 programmers	 used	 plug-boards	 for	 the	 variety	 of
complex	calculations	requested	of	the	newly	invented	machines.

The	invention	of	the	von	Neumann	architecture	allowed	computer	programs	to	be	stored	in	computer	memory.	Early	programs	had	to
be	painstakingly	crafted	using	the	instructions	(elementary	operations)	of	the	particular	machine,	often	in	binary	notation.	Every	model
of	computer	would	likely	use	different	instructions	(machine	language)	to	do	the	same	task.	Later,	assembly	languages	were	developed
that	let	the	programmer	specify	each	instruction	in	a	text	format,	entering	abbreviations	for	each	operation	code	instead	of	a	number
and	specifying	addresses	in	symbolic	form	(e.g.,	ADD	X,	TOTAL).	Entering	a	program	in	assembly	language	is	usually	more	convenient,
faster,	 and	 less	prone	 to	human	error	 than	using	machine	 language,	but	because	an	assembly	 language	 is	 little	more	 than	a	different	notation	 for	a	machine
language,	any	two	machines	with	different	instruction	sets	also	have	different	assembly	languages.

In	 1954,	 FORTRAN	was	 invented;	 it	was	 the	 first	 high	 level	 programming	 language	 to	 have	 a	 functional	 implementation,	 as	 opposed	 to	 just	 a	 design	 on	 paper.

Data	and
instructions	could	be
stored	on	external
punched	cards,
which	were	kept	in
order	and	arranged
in	program	decks.

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-188
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-189
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-190
https://commons.wikimedia.org/wiki/File:PunchCardDecks.agr.jpg

www.manaraa.com

In	 1954,	 FORTRAN	was	 invented;	 it	was	 the	 first	 high	 level	 programming	 language	 to	 have	 a	 functional	 implementation,	 as	 opposed	 to	 just	 a	 design	 on	 paper.
language	is,	in	very	general	terms,	any	programming	language	that	allows	the	programmer	to	write	programs	in	terms	that	are	more	abstract	than	assembly	language	instructions,	i.e.	at	a
level	of	abstraction	"higher"	than	that	of	an	assembly	language.)	It	allowed	programmers	to	specify	calculations	by	entering	a	formula	directly	(e.g.	
text,	 or	 source,	 is	 converted	 into	machine	 instructions	using	a	 special	program	called	a	 compiler,	which	 translates	 the	FORTRAN	program	 into	machine	 language.	 In	 fact,	 the	name
FORTRAN	stands	for	"Formula	Translation".	Many	other	languages	were	developed,	including	some	for	commercial	programming,	such	as	COBOL.	Programs	were	mostly	still	entered
using	punched	cards	or	paper	tape.	(See	computer	programming	in	the	punch	card	era).	By	the	late	1960s,	data	storage	devices	and	computer	terminals	became	inexpensive	enough	that
programs	could	be	created	by	typing	directly	into	the	computers.	Text	editors	were	developed	that	allowed	changes	and	corrections	to	be	made	much	more	easily	than	with	punched	cards.
(Usually,	an	error	in	punching	a	card	meant	that	the	card	had	to	be	discarded	and	a	new	one	punched	to	replace	it.)

As	 time	has	progressed,	 computers	have	made	giant	 leaps	 in	 the	 area	 of	 processing	power.	This	has	brought	 about	newer	programming	 languages	 that	 are	more	 abstracted	 from	 the
underlying	hardware.	Although	 these	high-level	 languages	usually	 incur	greater	overhead,	 the	 increase	 in	 speed	of	modern	computers	has	made	 the	use	of	 these	 languages	much	more
practical	 than	 in	the	past.	These	 increasingly	abstracted	 languages	 typically	are	easier	 to	 learn	and	allow	the	programmer	to	develop	applications	much	more	efficiently	and	with	 less
source	code.	However,	high-level	languages	are	still	impractical	for	a	few	programs,	such	as	those	where	low-level	hardware	control	is	necessary	or	where	maximum	processing	speed	is	vital.

Throughout	the	second	half	of	the	twentieth	century,	programming	was	an	attractive	career	in	most	developed	countries.	Some	forms	of	programming	have	been	increasingly	subject	to
offshore	outsourcing	(importing	software	and	services	from	other	countries,	usually	at	a	lower	wage),	making	programming	career	decisions	in	developed	countries	more	complicated,	while
increasing	economic	opportunities	in	less	developed	areas.	It	is	unclear	how	far	this	trend	will	continue	and	how	deeply	it	will	impact	programmer	wages	and	opportunities.

Whatever	the	approach	to	software	development	may	be,	the	final	program	must	satisfy	some	fundamental	properties.	The	following	properties	are	among	the	most	relevant:

Efficiency/performance:	the	amount	of	system	resources	a	program	consumes	(processor	time,	memory	space,	slow	devices	such	as	disks,	network	bandwidth	and	to	some	extent
even	user	interaction):	the	less,	the	better.	This	also	includes	correct	disposal	of	some	resources,	such	as	cleaning	up	temporary	files	and	lack	of	memory	leaks.
Reliability:	how	often	the	results	of	a	program	are	correct.	This	depends	on	conceptual	correctness	of	algorithms,	and	minimization	of	programming	mistakes,	such	as	mistakes	in
resource	management	(e.g.,	buffer	overflows	and	race	conditions)	and	logic	errors	(such	as	division	by	zero	or	off-by-one	errors).
Robustness:	how	well	a	program	anticipates	problems	not	due	to	programmer	error.	This	includes	situations	such	as	incorrect,	inappropriate	or	corrupt	data,	unavailability	of	needed
resources	such	as	memory,	operating	system	services	and	network	connections,	and	user	error.
Usability:	the	ergonomics	of	a	program:	the	ease	with	which	a	person	can	use	the	program	for	its	intended	purpose,	or	in	some	cases	even	unanticipated	purposes.	Such	issues	can
make	or	break	its	success	even	regardless	of	other	issues.	This	involves	a	wide	range	of	textual,	graphical	and	sometimes	hardware	elements	that	improve	the	clarity,	intuitiveness,
cohesiveness	and	completeness	of	a	program's	user	interface.
Portability:	the	range	of	computer	hardware	and	operating	system	platforms	on	which	the	source	code	of	a	program	can	be	compiled/interpreted	and	run.	This	depends	on
differences	in	the	programming	facilities	provided	by	the	different	platforms,	including	hardware	and	operating	system	resources,	expected	behaviour	of	the	hardware	and	operating
system,	and	availability	of	platform	specific	compilers	(and	sometimes	libraries)	for	the	language	of	the	source	code
Maintainability:	the	ease	with	which	a	program	can	be	modified	by	its	present	or	future	developers	in	order	to	make	improvements	or	customizations,	fix	bugs	and	security	holes,	or
adapt	it	to	new	environments.	Good	practices	during	initial	development	make	the	difference	in	this	regard.	This	quality	may	not	be	directly	apparent	to	the	end	user	but	it	can
significantly	affect	the	fate	of	a	program	over	the	long	term.

The	academic	field	and	the	engineering	practice	of	computer	programming	are	both	largely	concerned	with	discovering	and	implementing	the	most	efficient	algorithms	for	a	given	class	of
problem.	For	this	purpose,	algorithms	are	classified	into	orders	using	so-called	Big	O	notation,	O(n),	which	expresses	resource	use,	such	as	execution	time	or	memory	consumption,	in	terms
of	the	size	of	an	input.	Expert	programmers	are	familiar	with	a	variety	of	well-established	algorithms	and	their	respective	complexities	and	use	this	knowledge	to	choose	algorithms	that	are
best	suited	to	the	circumstances.

The	first	step	in	most	formal	software	development	projects	is	requirements	analysis,	followed	by	testing	to	determine	value	modeling,	implementation,	and	failure	elimination	(debugging).
There	exist	a	lot	of	differing	approaches	for	each	of	those	tasks.	One	approach	popular	for	requirements	analysis	is	Use	Case	analysis.	Nowadays	many	programmers	use	forms	of	Agile
software	development	where	the	various	stages	of	formal	software	development	are	more	integrated	together	into	short	cycles	that	take	a	few	weeks	rather	than	years.	There	are	many
approaches	to	the	Software	development	process

Popular	modeling	techniques	include	Object-Oriented	Analysis	and	Design	(OOAD)	and	Model-Driven	Architecture	(MDA).	The	Unified	Modeling	Language	(UML)	is	a	notation	used	for
both	the	OOAD	and	MDA.

A	similar	technique	used	for	database	design	is	Entity-Relationship	Modeling	(ER	Modeling).

Implementation	techniques	include	imperative	languages	(object-oriented	or	procedural),	functional	languages,	and	logic	languages.

It	is	very	difficult	to	determine	what	are	the	most	popular	of	modern	programming	languages.	Some	languages	are	very	popular	for	particular	kinds	of	applications	(e.g.,	COBOL	is	still
strong	in	the	corporate	data	center,	often	on	large	mainframes,	FORTRAN	in	engineering	applications,	scripting	languages	in	web	development,	and	C	in	embedded	applications),	while
some	languages	are	regularly	used	to	write	many	different	kinds	of	applications.

Methods	of	measuring	programming	language	popularity	include:	counting	the	number	of	job	advertisements	that	mention	the	language,
that	are	sold	(this	overestimates	the	importance	of	newer	languages),	and	estimates	of	the	number	of	existing	lines	of	code	written	in	the	language	(this	underestimates	the	number	of	users
of	business	languages	such	as	COBOL).

Debugging	is	a	very	important	task	in	the	software	development	process,	because	an	incorrect	program	can	have	significant	consequences	for	its	users.	Some

Modern	programming

Quality	requirements

Algorithmic	complexity

Methodologies

Measuring	language	usage

Debugging

www.manaraa.com

Debugging	is	a	very	important	task	in	the	software	development	process,	because	an	incorrect	program	can	have	significant	consequences	for	its	users.	Some
languages	are	more	prone	to	some	kinds	of	faults	because	their	specification	does	not	require	compilers	to	perform	as	much	checking	as	other	languages.	Use	of
a	static	analysis	tool	can	help	detect	some	possible	problems.

Debugging	is	often	done	with	IDEs	like	Eclipse,	Kdevelop,	NetBeans,	and	Visual	Studio.	Standalone	debuggers	like	gdb	are	also	used,	and	these	often	provide
less	of	a	visual	environment,	usually	using	a	command	line.

Different	programming	 languages	support	different	styles	of	programming	(called	programming	paradigms).	The	choice	of	 language	used	 is	subject	to	many
considerations,	such	as	company	policy,	suitability	to	task,	availability	of	third-party	packages,	or	 individual	preference.	Ideally,	the	programming	language
best	suited	for	the	task	at	hand	will	be	selected.	Trade-offs	from	this	ideal	involve	finding	enough	programmers	who	know	the	language	to	build	a	team,	the
availability	 of	 compilers	 for	 that	 language,	 and	 the	 efficiency	with	which	 programs	written	 in	 a	 given	 language	 execute.	 Languages	 form	 an	 approximate
spectrum	from	"low-level"	to	"high-level";	"low-level"	languages	are	typically	more	machine-oriented	and	faster	to	execute,	whereas	"high-level"	languages	are
more	abstract	and	easier	to	use	but	execute	less	quickly.

Allen	Downey,	in	his	book	How	To	Think	Like	A	Computer	Scientist,	writes:

The	details	look	different	in	different	languages,	but	a	few	basic	instructions	appear	in	just	about	every	language:

input:	Get	data	from	the	keyboard,	a	file,	or	some	other	device.
output:	Display	data	on	the	screen	or	send	data	to	a	file	or	other	device.
arithmetic:	Perform	basic	arithmetical	operations	like	addition	and	multiplication.
conditional	execution:	Check	for	certain	conditions	and	execute	the	appropriate	sequence	of	statements.
repetition:	Perform	some	action	repeatedly,	usually	with	some	variation.

Many	computer	languages	provide	a	mechanism	to	call	functions	provided	by	libraries.	Provided	the	functions	in	a	library	follow	the	appropriate	run	time	conventions	(e.g.,	method	of
passing	arguments),	then	these	functions	may	be	written	in	any	other	language.

Computer	programmers	are	those	who	write	computer	software.	Their	jobs	usually	involve:

Coding
Compilation
Debugging
Documentation
Integration
Maintenance
Requirements	analysis
Software	architecture
Software	testing
Specification

1.	 Hoc,	J.-M.	and	Nguyen-Xuan,	A.	Language	semantics,	mental	models	and	analogy.	J.-M.	Hoc	et	al.,	Eds.	Psychology	of	Programming.	Academic	Press.	London,	1990,	139–156,	cited
through	Brad	A.	Myers	,	John	F.	Pane	,	Andy	Ko,	Natural	programming	languages	and	environments,	Communications	of	the	ACM,	v.47	n.9,	September	2004
45/1015864.1015888)

2.	 Paul	Graham	(2003).	Hackers	and	Painters.	http://www.paulgraham.com/hp.html.	Retrieved	2006-08-22.
3.	 Kenneth	E.	Iverson,	the	originator	of	the	APL	programming	language,	believed	that	the	Sapir–Whorf	hypothesis	applied	to	computer	languages	(without	actually	mentioning	the
hypothesis	by	name).	His	Turing	award	lecture,	"Notation	as	a	tool	of	thought",	was	devoted	to	this	theme,	arguing	that	more	powerful	notations	aided	thinking	about	computer
algorithms.	Iverson	K.E.,"Notation	as	a	tool	of	thought	(http://elliscave.com/APL_J/tool.pdf)",	Communications	of	the	ACM

4.	 "Ancient	Greek	Computer's	Inner	Workings	Deciphered	(http://news.nationalgeographic.com/news/2006/11/061129-ancient-greece.html)
2006.

5.	 Freeth,	Tony;	Jones,	Alexander;	Steele,	John	M.;	Bitsakis,	Yanis	(July	31,	2008).	"Calendars	with	Olympiad	display	and	eclipse	prediction	on	the	Antikythera	Mechanism"
(7204):	614–617.	doi:10.1038/nature07130.	PMID	18668103.	http://www.nature.com/nature/journal/v454/n7204/full/nature07130.html

6.	 A	13th	Century	Programmable	Robot	(http://www.shef.ac.uk/marcoms/eview/articles58/robot.html),	University	of	Sheffield
7.	 Fowler,	Charles	B.	(October	1967).	"The	Museum	of	Music:	A	History	of	Mechanical	Instruments".	Music	Educators	Journal
doi:10.2307/3391092.	http://jstor.org/stable/3391092

8.	 "Columbia	University	Computing	History	-	Herman	Hollerith".	Columbia.edu.	http://www.columbia.edu/acis/history/hollerith.html

Programming	languages

Programmers

References

http://dx.doi.org/10.1145/1015864.1015888
http://www.paulgraham.com/hp.html
http://www.paulgraham.com/hp.html
http://elliscave.com/APL_J/tool.pdf
http://news.nationalgeographic.com/news/2006/11/061129-ancient-greece.html
http://www.nature.com/nature/journal/v454/n7204/full/nature07130.html
https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1038%2Fnature07130
https://en.wikipedia.org/wiki/PubMed_Identifier
http://www.ncbi.nlm.nih.gov/pubmed/18668103
http://www.nature.com/nature/journal/v454/n7204/full/nature07130.html
http://www.shef.ac.uk/marcoms/eview/articles58/robot.html
http://jstor.org/stable/3391092
https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.2307%2F3391092
http://jstor.org/stable/3391092
http://www.columbia.edu/acis/history/hollerith.html
http://www.columbia.edu/acis/history/hollerith.html

www.manaraa.com

9.	 12:10	p.m.	ET	(2007-03-20).	"Fortran	creator	John	Backus	dies	-	Tech	and	gadgets-	msnbc.com".	MSNBC.	http://www.msnbc.msn.com/id/17704662/
10.	 "CSC-302	99S	:	Class	02:	A	Brief	History	of	Programming	Languages".	Math.grin.edu.	http://www.math.grin.edu/~rebelsky/Courses/CS302/99S/Outlines/outline.02.html

2010-04-25.
11.	 Survey	of	Job	advertisements	mentioning	a	given	language	(http://www.computerweekly.com/Articles/2007/09/11/226631/sslcomputer-weekly-it-salary-survey-finance-boom-drives-it-j

ob.htm)>

Weinberg,	Gerald	M.,	The	Psychology	of	Computer	Programming,	New	York:	Van	Nostrand	Reinhold,	1971

How	to	Think	Like	a	Computer	Scientist	(http://openbookproject.net/thinkCSpy)	-	by	Jeffrey	Elkner,	Allen	B.	Downey	and	Chris	Meyers

Coding	conventions	are	a	set	of	guidelines	for	a	specific	programming	language	that	recommend	programming	style,	practices	and	methods	for	each	aspect	of	a	piece	program	written
in	 this	 language.	 These	 conventions	 usually	 cover	 file	 organization,	 indentation,	 comments,	 declarations,	 statements,	 white	 space,	 naming	 conventions,	 programming	 practices,
programming	principles,	programming	rules	of	thumb,	etc.	Software	programmers	are	highly	recommended	to	follow	these	guidelines	to	help	improve	the	readability	of	their	source	code
and	make	software	maintenance	easier.	Coding	conventions	are	only	applicable	to	the	human	maintainers	and	peer	reviewers	of	a	software	project.	Conventions	may	be	formalized	in	a
documented	set	of	rules	that	an	entire	team	or	company	follows,	or	may	be	as	informal	as	the	habitual	coding	practices	of	an	individual.	Coding	conventions	are	not	enforced	by	compilers.
As	a	result,	not	following	some	or	all	of	the	rules	has	no	impact	on	the	executable	programs	created	from	the	source	code.codeing	is	very	helpful	for	using	computers

Reducing	the	cost	of	software	maintenance	is	the	most	often	cited	reason	for	following	coding	conventions.	In	their	introduction	to	code	conventions	for	the	Java	Programming	Language,
Sun	Microsystems	provides	the	following	rationale:[1]

Code	conventions	are	important	to	programmers	for	a	number	of	reasons:

80%	of	the	lifetime	cost	of	a	piece	of	software	goes	to	maintenance.
Hardly	any	software	is	maintained	for	its	whole	life	by	the	original	author.
Code	conventions	improve	the	readability	of	the	software,	allowing	engineers	to	understand	new	code	more	quickly	and	thoroughly.
If	you	ship	your	source	code	as	a	product,	you	need	to	make	sure	it	is	as	well	packaged	and	clean	as	any	other	product	you	create.

Software	peer	review	frequently	involves	reading	source	code.	This	type	of	peer	review	is	primarily	a	defect	detection	activity.	By	definition,	only	the	original	author	of	a	piece	of	code	has
read	the	source	file	before	the	code	is	submitted	for	review.	Code	that	is	written	using	consistent	guidelines	is	easier	for	other	reviewers	to	understand	and	assimilate,	improving	the	efficacy
of	the	defect	detection	process.

Even	for	the	original	author,	consistently	coded	software	eases	maintainability.	There	is	no	guarantee	that	an	individual	will	remember	the	precise	rationale	for	
code	was	written	in	a	certain	way	long	after	the	code	was	originally	written.	Coding	conventions	can	help.	Consistent	use	of	whitespace	improves	readability	and	reduces	the	time	it	takes
to	understand	the	software.

Refactoring	refers	to	a	software	maintenance	activity	where	source	code	is	modified	to	improve	readability	or	improve	its	structure.	Software	is	often	refactored	to	bring	it	into	conformance
with	a	team's	stated	coding	standards	after	its	initial	release.	Any	change	that	does	not	alter	the	behavior	of	the	software	can	be	considered	refactoring.	Common	refactoring	activities	are
changing	variable	names,	renaming	methods,	moving	methods	or	whole	classes	and	breaking	large	methods	(or	functions)	into	smaller	ones.

Agile	software	development	methodologies	plan	for	regular	(or	even	continuous)	refactoring	making	it	an	integral	part	of	the	team	software	development	process.

Coding	conventions	allow	to	have	simple	scripts	or	programs	whose	job	is	to	process	source	code	for	some	purpose	other	than	compiling	it	into	an	executable.	It	is	common	practice	to
count	the	software	size	(Source	lines	of	code)	to	track	current	project	progress	or	establish	a	baseline	for	future	project	estimates.

Consistent	 coding	 standards	 can,	 in	 turn,	make	 the	measurements	more	 consistent.	 Special	 tags	within	 source	 code	 comments	 are	 often	 used	 to	 process	 documentation,	 two	 notable
examples	are	javadoc	and	doxygen.	The	tools	specifies	the	use	of	a	set	of	tags,	but	their	use	within	a	project	is	determined	by	convention.

Coding	conventions	simplify	writing	new	software	whose	job	is	to	process	existing	software.	Use	of	static	code	analysis	has	grown	consistently	since	the	1950s.	Some	of	the	growth	of	this
class	of	development	tools	stems	from	increased	maturity	and	sophistication	of	the	practitioners	themselves	(and	the	modern	focus	on	safety	and	security),	but	also	from	the	nature	of	the
languages	themselves.

All	software	practitioners	must	grapple	with	the	problems	of	organizing	and	managing	very	many	detailed	instructions,	each	of	which	will	eventually	be	processed	in	order	to	perform	the
task	for	which	it	was	written.	For	all	but	the	smallest	software	projects,	source	code	(instructions)	are	partitioned	into	separate	files	and	frequently	among	many	directories.	It	was	natural
for	 programmers	 to	 collect	 closely	 related	 functions	 (behaviors)	 in	 the	 same	 file	 and	 to	 collect	 related	 files	 into	 directories.	As	 software	 development	 evolved	 from	 purely	 procedural
programming	(such	as	found	in	FORTRAN)	towards	more	object-oriented	constructs	(such	as	found	in	C++),	it	became	the	practice	to	write	the	code	for	a	single	(public)	class	in	a	single
file	(the	'one	class	per	file'	convention).[3][4]	Java	has	gone	one	step	further	-	the	Java	compiler	returns	an	error	if	it	finds	more	than	one	public	class	per	file.

A	convention	 in	one	 language	may	be	a	requirement	 in	another.	Language	conventions	also	affect	 individual	 source	 files.	Each	compiler	 (or	 interpreter)	used	to	process	 source	code	 is
unique.	 The	 rules	 a	 compiler	 applies	 to	 the	 source	 creates	 implicit	 standards.	 For	 example,	 Python	 code	 is	 much	 more	 consistently	 indented	 than,	 say	 Perl,	 because	 whitespace
(indentation)	is	actually	significant	to	the	interpreter.	Python	does	not	use	the	brace	syntax	Perl	uses	to	delimit	functions.	Changes	in	indentation	serve	as	the	delimiters.

Further	reading

External	links

Code	Convention

Software	maintenance

Quality

Refactoring

Task	automation

Language	factors

http://www.msnbc.msn.com/id/17704662/
http://www.msnbc.msn.com/id/17704662/
http://www.math.grin.edu/~rebelsky/Courses/CS302/99S/Outlines/outline.02.html
http://www.math.grin.edu/~rebelsky/Courses/CS302/99S/Outlines/outline.02.html
http://www.computerweekly.com/Articles/2007/09/11/226631/sslcomputer-weekly-it-salary-survey-finance-boom-drives-it-job.htm
http://openbookproject.net/thinkCSpy
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-194
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-196
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-197

www.manaraa.com

uses	a	brace	syntax	similar	to	Perl	or	C/C++	to	delimit	functions,	does	not	allow	the	following,	which	seems	fairly	reasonable	to	a	C	programmer:

set	i	0
while	{$i	<	10}	
{
			puts	"$i	squared	=	[expr	$i*$i]"
			incr	i
}

The	reason	is	that	in	Tcl,	curly	braces	are	not	used	only	to	delimit	functions	as	in	C	or	Java.	More	generally,	curly	braces	are	used	to	group	words	together	into	a	single	argument.
Tcl,	 the	word	while	 takes	 two	arguments,	a	condition	and	an	action.	 In	 the	example	above,	while	 is	missing	 its	 second	argument,	 its	
character	to	delimit	the	end	of	a	command).

As	mentioned	above,	common	coding	conventions	may	cover	the	following	areas:

Comment	conventions
Indent	style	conventions
Naming	conventions
Programming	practices
Programming	principles
Programming	rules	of	thumb
Programming	style	conventions

For	example,	in	Java	this	would	involve	having	statements	written	like	this:

a++;
b	=	a;

But	not	like	this:

a++;	b	=	a;

Some	programmers	suggest	that	coding	where	the	result	of	a	decision	is	merely	the	computation	of	a	Boolean	value,	are	overly	verbose	and	error	prone.	They	prefer	to	have	the	decision	in
the	computation	itself,	like	this:

return	(hours	<	24)	&&	(minutes	<	60)	&&	(seconds	<	60);

The	difference	is	entirely	stylistic,	because	optimizing	compilers	may	produce	identical	object	code	for	both	forms.	However,	stylistically,	programmers	disagree	which	form	is	easier	to	read
and	maintain.

Arguments	in	favor	of	the	longer	form	include:	it	is	then	possible	to	set	a	per-line	breakpoint	on	one	branch	of	the	decision;	further	lines	of	code	could	be	added	to	one	branch	without
refactoring	the	return	line,	which	would	increase	the	chances	of	bugs	being	introduced;	the	longer	form	would	always	permit	a	debugger	to	step	to	a	line	where	the	variables	involved	are
still	in	scope.

In	languages	which	use	one	symbol	(typically	a	single	equals	sign,	(=))	for	assignment	and	another	(typically	two	equals	signs,	(
PHP,	Perl	numeric	context,	and	most	 languages	 in	the	 last	15	years),	and	where	assignments	may	be	made	within	control	 structures,	 there	 is	an	advantage	to	adopting	the	 left-hand
comparison	style:	to	place	constants	or	expressions	to	the	left	in	any	comparison.	[9]	[10]

Here	are	both	left	and	right-hand	comparison	styles,	applied	to	a	line	of	Perl	code.	In	both	cases,	this	compares	the	value	in	the	variable	
in	the	subsequent	block.

Common	conventions

Examples

Only	one	statement	should	occur	per	line

Boolean	values	in	decision	structures

Left-hand	comparisons

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-phpcook-202
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-203

www.manaraa.com

if	($a	==	42)	{	...	}		#	A	right-hand	comparison	checking	if	$a	equals	42.
if	(42	==	$a)	{	...	}		#	Recast,	using	the	left-hand	comparison	style.

The	difference	occurs	when	a	developer	accidentally	types	=	instead	of	==:

if	($a	=	42)	{	...	}		#	Inadvertent	assignment	which	is	often	hard	to	debug
if	(42	=	$a)	{	...	}		#	Compile	time	error	indicates	source	of	problem

The	first	(right-hand)	line	now	contains	a	potentially	subtle	flaw:	rather	than	the	previous	behaviour,	it	now	sets	the	value	of	
block.	As	this	is	syntactically	legitimate,	the	error	may	go	unnoticed	by	the	programmer,	and	the	software	may	ship	with	a	bug.

The	second	(left-hand)	line	contains	a	semantic	error,	as	numeric	values	cannot	be	assigned	to.	This	will	result	in	a	diagnostic	message	being	generated	when	the	code	is	compiled,	so	the
error	cannot	go	unnoticed	by	the	programmer.

Some	languages	have	built-in	protections	against	inadvertent	assignment.	Java	and	C#,	for	example,	do	not	support	automatic	conversion	to	boolean	for	just	this	reason.

The	risk	can	also	be	mitigated	by	use	of	static	code	analysis	tools	that	can	detect	this	issue.

The	use	of	 logical	 control	 structures	 for	 looping	adds	 to	good	programming	style	as	well.	 It	helps	 someone	 reading	code	 to	better	understand	the	program's	 sequence	of	 execution	 (in
imperative	programming	languages).	For	example,	in	pseudocode:

i	=	0
	
while	i	<	5
		print	i	*	2
		i	=	i	+	1
end	while
	
print	"Ended	loop"

The	above	snippet	obeys	the	naming	and	indentation	style	guidelines,	but	the	following	use	of	the	"for"	construct	may	be	considered	easier	to	read:

for	i	=	0,	i	<	5,	i=i+1
		print	i	*	2
	
print	"Ended	loop"

In	many	languages,	the	often	used	"for	each	element	in	a	range"	pattern	can	be	shortened	to:

for	i	=	0	to	5
		print	i	*	2
	
print	"Ended	loop"

In	 programming	 languages	 that	 allow	 curly	 brackets,	 it	 has	 become	 common	 for	 style	 documents	 to	 require	 that	 even	 where	 optional,	 curly	 brackets	 be	 used	 with	 all	 control	 flow
constructs.

for	(i	=	0	to	5)	{
		print	i	*	2;
}

Looping	and	control	structures

www.manaraa.com

	
print	"Ended	loop";

This	prevents	program-flow	bugs	which	can	be	time-consuming	to	track	down,	such	as	where	a	terminating	semicolon	is	introduced	at	the	end	of	the	construct	(a	common	typo):

	for	(i	=	0;	i	<	5;	++i);
				printf("%d\n",	i*2);				/*	The	incorrect	indentation	hides	the	fact	
																															that	this	line	is	not	part	of	the	loop	body.	*/
	
	printf("Ended	loop");

...or	where	another	line	is	added	before	the	first:

	for	(i	=	0;	i	<	5;	++i)
				fprintf(logfile,	"loop	reached	%d\n",	i);
				printf("%d\n",	i*2);				/*	The	incorrect	indentation	hides	the	fact	
																															that	this	line	is	not	part	of	the	loop	body.	*/
	
	printf("Ended	loop");

Where	items	in	a	list	are	placed	on	separate	lines,	it	is	sometimes	considered	good	practice	to	add	the	item-separator	after	the	final	item,	as	well	as	between	each	item,	at	least	in	those
languages	where	doing	so	is	supported	by	the	syntax	(e.g.,	C,	Java)

const	char	*array[]	=	{
				"item1",
				"item2",
				"item3",		/*	still	has	the	comma	after	it	*/
};

This	prevents	syntax	errors	or	subtle	string-concatenation	bugs	when	the	list	items	are	re-ordered	or	more	items	are	added	to	the	end,	without	the	programmer's	noticing	the	"missing"
separator	on	the	line	which	was	previously	last	in	the	list.	However,	this	technique	can	result	in	a	syntax	error	(or	misleading	semantics)	in	some	languages.	Even	for	languages	that	do
support	trailing	commas,	not	all	list-like	syntactical	constructs	in	those	languages	may	support	it.

1.	 "Code	Conventions	for	the	Java	Programming	Language	:	Why	Have	Code	Conventions".	Sun	Microsystems,	Inc..	1999-04-20
http://java.sun.com/docs/codeconv/html/CodeConventions.doc.html#16712.

2.	 Jeffries,	Ron	(2001-11-08).	"What	is	Extreme	Programming?	:	Design	Improvement".	XP	Magazine.	http://www.xprogramming.com/xpmag/whatisxp.htm#design
3.	 Hoff,	Todd	(2007-01-09).	"C++	Coding	Standard	:	Naming	Class	Files".	http://www.possibility.com/Cpp/CppCodingStandard.html#cflayout
4.	 FIFE	coding	standards	(http://wiki.fifengine.de/index.php?title=Coding_standards)
5.	 van	Rossum,	Guido;	Fred	L.	Drake,	Jr.,	editor	(2006-09-19).	"Python	Tutorial	:	First	Steps	Towards	Programming"
http://docs.python.org/tut/node5.html#SECTION005200000000000000000.

6.	 Raymond,	Eric	(2000-05-01).	"Why	Python?".	Linux	Journal.	http://www.linuxjournal.com/article/3882.
7.	 Tcl	Developer	Xchange.	"Summary	of	Tcl	language	syntax".	ActiveState.	http://www.tcl.tk/man/tcl8.4/TclCmd/Tcl.htm
8.	 Staplin,	George	Peter	(2006-07-16).	"Why	can	I	not	start	a	new	line	before	a	brace	group".	'the	Tcler's	Wiki'.	http://wiki.tcl.tk/8344
9.	 Sklar,	David;	Adam	Trachtenberg	(2003).	PHP	Cookbook.	O'Reilly.,	recipe	5.1	"Avoiding	==	Versus	=	Confusion",	p118
10.	 "C	Programming	FAQs:	Frequently	Asked	Questions".	Addison-Wesley,	1995.	Nov.	2010.	http://c-faq.com/style/revtest.html

Lists

References

External	links

Coding	conventions	for	languages

http://java.sun.com/docs/codeconv/html/CodeConventions.doc.html#16712
http://java.sun.com/docs/codeconv/html/CodeConventions.doc.html#16712
http://www.xprogramming.com/xpmag/whatisxp.htm#design
http://www.xprogramming.com/xpmag/whatisxp.htm#design
http://www.possibility.com/Cpp/CppCodingStandard.html#cflayout
http://www.possibility.com/Cpp/CppCodingStandard.html#cflayout
http://wiki.fifengine.de/index.php?title=Coding_standards
http://docs.python.org/tut/node5.html#SECTION005200000000000000000
http://docs.python.org/tut/node5.html#SECTION005200000000000000000
http://www.linuxjournal.com/article/3882
http://www.linuxjournal.com/article/3882
http://www.tcl.tk/man/tcl8.4/TclCmd/Tcl.htm
http://www.tcl.tk/man/tcl8.4/TclCmd/Tcl.htm
http://wiki.tcl.tk/8344
http://wiki.tcl.tk/8344
http://c-faq.com/style/revtest.html
http://c-faq.com/style/revtest.html

www.manaraa.com

ActionScript:	Flex	SDK	coding	conventions	and	best	practices	(http://opensource.adobe.com/wiki/display/flexsdk/Coding+Conventions)
Ada:	Ada	95	Quality	and	Style	Guide:	Guidelines	for	Professional	Programmers	(http://www.adaic.com/docs/95style/html/cover.html)
Ada:	Guide	for	the	use	of	the	Ada	programming	language	in	high	integrity	systems	(http://www.dit.upm.es/ork/documents/adahis.pdf)
Ada:	NASA	Flight	Software	Branch	—	Ada	Coding	Standard	(http://software.gsfc.nasa.gov/AssetsApproved/PA2.4.1.1.1.pdf)
Ada:	European	Space	Agency's	Ada	Coding	Standard	(ftp://ftp.estec.esa.nl/pub/wm/wme/bssc/bssc983.pdf)	(BSSC(98)3)
C:	Ganssle	Group's	Firmware	Development	Standard	(http://www.ganssle.com/fsm.pdf)
C:	Netrino	Embedded	C	Coding	Standard	(http://www.netrino.com/Coding-Standard)
C:	Micrium	C	Coding	Standard	(http://micrium.com/download/an2000.pdf)
C++:	Quantum	Leaps	C/C++	Coding	Standard	(http://www.state-machine.com/doc/AN_QL_Coding_Standard.pdf)
C++:	GeoSoft's	C++	Programming	Style	Guidelines	(http://geosoft.no/development/cppstyle.html)
C++:	Google's	C++	Style	Guide	(http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml)
C#:	Design	Guidelines	for	Developing	Class	Libraries	(http://msdn.microsoft.com/en-us/library/ms229042(VS.80).aspx)
C#:	Microsoft	(http://blogs.msdn.com/brada/articles/361363.aspx),	Philips	Healthcare	(http://www.tiobe.com/standards/gemrcsharpcs.pdf)
D:	The	D	Style	(http://www.digitalmars.com/d/1.0/dstyle.html)
Erlang:	Erlang	Programming	Rules	and	Conventions	(http://www.erlang.se/doc/programming_rules.shtml)
Flex:	Code	conventions	for	the	Flex	SDK	(http://opensource.adobe.com/wiki/display/flexsdk/Coding+Conventions)
GML:	Game	Maker	Language	(http://yoyogames.com/)
Java:	Ambysoft's	Coding	Standards	for	Java	(http://www.ambysoft.com/essays/javaCodingStandards.html)
Java:	Code	Conventions	for	the	Java	Programming	Language	(http://java.sun.com/docs/codeconv/)
Java:	GeoSoft's	Java	Programming	Style	Guidelines	(http://geosoft.no/development/javastyle.html)
Java:	Java	Coding	Standards	(http://www.dmoz.org//Computers/Programming/Languages/Java/Coding_Standards//)
Lisp:	Riastradh's	Lisp	Style	Rules	(http://mumble.net/~campbell/scheme/style.txt)
Mono:	Programming	style	for	Mono	(http://www.mono-project.com/Coding_Guidelines)
Object	Pascal:	Object	Pascal	Style	Guide	(http://bdn.borland.com/article/10280)
Perl:	Perl	Style	Guide	(http://perldoc.perl.org/perlstyle.html)
PHP::PEAR:	PHP::PEAR	Coding	Standards	(http://pear.php.net/manual/en/standards.php)
Python:	Style	Guide	for	Python	Code	(http://www.python.org/peps/pep-0008.html)
Ruby:	The	Unofficial	Ruby	Usage	Guide	(http://www.caliban.org/ruby/rubyguide.shtml)
Ruby:	Good	API	Design	(http://rpa-base.rubyforge.org/wiki/wiki.cgi?GoodAPIDesign)

Apache	Developers'	C	Language	Style	Guide	(http://httpd.apache.org/dev/styleguide.html)
Drupal	PHP	Coding	Standards	(http://drupal.org/coding-standards)
Linux	Kernel	Coding	Style	(http://lxr.linux.no/source/Documentation/CodingStyle)	(or	Documentation/CodingStyle	in	the	Linux	Kernel	source	tree)
ModuLiq	Zero	Indent	Coding	Style	(http://moduliq.org/documentation/moduliq_zero_indent_coding_style.html)
Mozilla	Coding	Style	Guide	(http://www.mozilla.org/hacking/mozilla-style-guide.html)
Road	Intranet's	C++	Guidelines	(http://www.qhull.org/road/road-faq/xml/cpp-guideline.xml)
The	NetBSD	source	code	style	guide	(ftp://ftp.netbsd.org/pub/NetBSD/NetBSD-current/src/share/misc/style)	(formerly	known	as	the	BSD	Kernel	Normal	Form)
"GNAT	Coding	Style:	A	Guide	for	GNAT	Developers".	GCC	online	documentation.	Free	Software	Foundation.	http://gcc.gnu.org/onlinedocs/gnat-style/
(http://gcc.gnu.org/onlinedocs/gnat-style.pdf))

Introduction	to	Software	Engineering/Implementation/Good	Coding

Software	documentation	or	source	code	documentation	is	written	text	that	accompanies	computer	software.	It	either	explains	how	it	operates	or	how	to	use	it,	and	may	mean
different	things	to	people	in	different	roles.

Documentation	is	an	important	part	of	software	engineering.	Types	of	documentation	include:

Coding	conventions	for	projects

Good	Coding

Documentation

Involvement	of	people	in	software	life

http://opensource.adobe.com/wiki/display/flexsdk/Coding+Conventions
http://www.adaic.com/docs/95style/html/cover.html
http://www.dit.upm.es/ork/documents/adahis.pdf
http://software.gsfc.nasa.gov/AssetsApproved/PA2.4.1.1.1.pdf
ftp://ftp.estec.esa.nl/pub/wm/wme/bssc/bssc983.pdf
http://www.ganssle.com/fsm.pdf
http://www.netrino.com/Coding-Standard
http://micrium.com/download/an2000.pdf
http://www.state-machine.com/doc/AN_QL_Coding_Standard.pdf
http://geosoft.no/development/cppstyle.html
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://msdn.microsoft.com/en-us/library/ms229042(VS.80).aspx
http://blogs.msdn.com/brada/articles/361363.aspx
http://www.tiobe.com/standards/gemrcsharpcs.pdf
http://www.digitalmars.com/d/1.0/dstyle.html
http://www.erlang.se/doc/programming_rules.shtml
http://opensource.adobe.com/wiki/display/flexsdk/Coding+Conventions
http://yoyogames.com/
http://www.ambysoft.com/essays/javaCodingStandards.html
http://java.sun.com/docs/codeconv/
http://geosoft.no/development/javastyle.html
http://www.dmoz.org//Computers/Programming/Languages/Java/Coding_Standards//
http://mumble.net/~campbell/scheme/style.txt
http://www.mono-project.com/Coding_Guidelines
http://bdn.borland.com/article/10280
http://perldoc.perl.org/perlstyle.html
http://pear.php.net/manual/en/standards.php
http://www.python.org/peps/pep-0008.html
http://www.caliban.org/ruby/rubyguide.shtml
http://rpa-base.rubyforge.org/wiki/wiki.cgi?GoodAPIDesign
http://httpd.apache.org/dev/styleguide.html
http://drupal.org/coding-standards
http://lxr.linux.no/source/Documentation/CodingStyle
http://moduliq.org/documentation/moduliq_zero_indent_coding_style.html
http://www.mozilla.org/hacking/mozilla-style-guide.html
http://www.qhull.org/road/road-faq/xml/cpp-guideline.xml
ftp://ftp.netbsd.org/pub/NetBSD/NetBSD-current/src/share/misc/style
http://gcc.gnu.org/onlinedocs/gnat-style/
http://gcc.gnu.org/onlinedocs/gnat-style/
http://gcc.gnu.org/onlinedocs/gnat-style.pdf
https://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Implementation/Good_Coding&action=edit&redlink=1

www.manaraa.com

1.	 Requirements	-	Statements	that	identify	attributes,	capabilities,	characteristics,	or	qualities	of	a	system.	This	is	the	foundation	for	what	shall	be	or	has	been	implemented.
2.	 Architecture/Design	-	Overview	of	softwares.	Includes	relations	to	an	environment	and	construction	principles	to	be	used	in	design	of	software	components.
3.	 Technical	-	Documentation	of	code,	algorithms,	interfaces,	and	APIs.
4.	 End	User	-	Manuals	for	the	end-user,	system	administrators	and	support	staff.
5.	 Marketing	-	How	to	market	the	product	and	analysis	of	the	market	demand.

Requirements	documentation	is	the	description	of	what	a	particular	software	does	or	shall	do.	It	is	used	throughout	development	to	communicate	what	the	software	does	or	shall	do.	It	is
also	used	as	an	agreement	or	as	the	foundation	for	agreement	on	what	the	software	shall	do.	Requirements	are	produced	and	consumed	by	everyone	involved	in	the	production	of	software:
end	users,	customers,	product	managers,	project	managers,	sales,	marketing,	software	architects,	usability	engineers,	interaction	designers,	developers,	and	testers,	to	name	a	few.	Thus,
requirements	documentation	has	many	different	purposes.

Requirements	come	in	a	variety	of	styles,	notations	and	formality.	Requirements	can	be	goal-like	(e.g.,	distributed	work	environment
clicking	a	configuration	file	and	select	the	'build'	function),	and	anything	in	between.	They	can	be	specified	as	statements	in	natural	language,	as	drawn	figures,	as	detailed	mathematical
formulas,	and	as	a	combination	of	them	all.

The	variation	and	complexity	of	requirements	documentation	makes	it	a	proven	challenge.	Requirements	may	be	implicit	and	hard	to	uncover.	It	is	difficult	to	know	exactly	how	much	and
what	kind	of	documentation	is	needed	and	how	much	can	be	left	to	the	architecture	and	design	documentation,	and	it	is	difficult	to	know	how	to	document	requirements	considering	the
variety	 of	 people	 that	 shall	 read	 and	 use	 the	 documentation.	 Thus,	 requirements	 documentation	 is	 often	 incomplete	 (or	 non-existent).	Without	 proper	 requirements	 documentation,
software	changes	become	more	difficult—and	therefore	more	error	prone	(decreased	software	quality)	and	time-consuming	(expensive).

The	need	for	requirements	documentation	is	typically	related	to	the	complexity	of	the	product,	the	impact	of	the	product,	and	the	life	expectancy	of	the	software.	If	the	software	is	very
complex	or	developed	by	many	people	(e.g.,	mobile	phone	software),	requirements	can	help	to	better	communicate	what	to	achieve.	If	the	software	is	safety-critical	and	can	have	negative
impact	on	human	life	(e.g.,	nuclear	power	systems,	medical	equipment),	more	formal	requirements	documentation	is	often	required.	If	the	software	is	expected	to	live	for	only	a	month	or
two	(e.g.,	very	small	mobile	phone	applications	developed	specifically	for	a	certain	campaign)	very	little	requirements	documentation	may	be	needed.	If	the	software	is	a	first	release	that	is
later	built	upon,	requirements	documentation	is	very	helpful	when	managing	the	change	of	the	software	and	verifying	that	nothing	has	been	broken	in	the	software	when	it	is	modified.

Traditionally,	 requirements	 are	 specified	 in	 requirements	 documents	 (e.g.	 using	 word	 processing	 applications	 and	 spreadsheet	 applications).	 To	manage	 the	 increased	 complexity	 and
changing	nature	of	requirements	documentation	(and	software	documentation	in	general),	database-centric	systems	and	special-purpose	requirements	management	tools	are	advocated.

Architecture	documentation	is	a	special	breed	of	design	document.	In	a	way,	architecture	documents	are	third	derivative	from	the	code	(design	document	being	second	derivative,	and	code
documents	being	first).	Very	little	 in	the	architecture	documents	is	specific	to	the	code	itself.	These	documents	do	not	describe	how	to	program	a	particular	routine,	or	even	why	that
particular	routine	exists	in	the	form	that	it	does,	but	instead	merely	lays	out	the	general	requirements	that	would	motivate	the	existence	of	such	a	routine.	A	good	architecture	document	is
short	on	details	but	thick	on	explanation.	It	may	suggest	approaches	for	lower	level	design,	but	leave	the	actual	exploration	trade	studies	to	other	documents.

Another	breed	of	design	docs	is	the	comparison	document,	or	trade	study.	This	would	often	take	the	form	of	a	whitepaper
alternate	approaches.	It	could	be	at	the	user	interface,	code,	design,	or	even	architectural	level.	It	will	outline	what	the	situation	is,	describe	one	or	more	alternatives,	and	enumerate	the
pros	and	cons	of	each.	A	good	trade	study	document	is	heavy	on	research,	expresses	its	idea	clearly	(without	relying	heavily	on	obtuse	jargon	to	dazzle	the	reader),	and	most	importantly	is
impartial.	 It	 should	honestly	 and	 clearly	 explain	 the	 costs	 of	whatever	 solution	 it	 offers	 as	 best.	The	 objective	 of	 a	 trade	 study	 is	 to	devise	 the	best	 solution,	 rather	 than	 to	push	 a
particular	point	of	view.	It	is	perfectly	acceptable	to	state	no	conclusion,	or	to	conclude	that	none	of	the	alternatives	are	sufficiently	better	than	the	baseline	to	warrant	a	change.	It	should
be	approached	as	a	scientific	endeavor,	not	as	a	marketing	technique.

A	 very	 important	 part	 of	 the	 design	 document	 in	 enterprise	 software	 development	 is	 the	 Database	 Design	 Document	 (DDD).	 It	 contains	 Conceptual,	 Logical,	 and	 Physical	 Design
Elements.	The	DDD	includes	the	formal	information	that	the	people	who	interact	with	the	database	need.	The	purpose	of	preparing	it	 is	to	create	a	common	source	to	be	used	by	all
players	within	the	scene.	The	potential	users	are:

Database	Designer
Database	Developer
Database	Administrator
Application	Designer
Application	Developer

When	talking	about	Relational	Database	Systems,	the	document	should	include	following	parts:

Entity	-	Relationship	Schema,	including	following	information	and	their	clear	definitions:

Entity	Sets	and	their	attributes
Relationships	and	their	attributes
Candidate	keys	for	each	entity	set
Attribute	and	Tuple	based	constraints

Relational	Schema,	including	following	information:

Tables,	Attributes,	and	their	properties
Views
Constraints	such	as	primary	keys,	foreign	keys,
Cardinality	of	referential	constraints
Cascading	Policy	for	referential	constraints

Requirements	documentation

Architecture/Design	documentation

www.manaraa.com

Primary	keys
It	is	very	important	to	include	all	information	that	is	to	be	used	by	all	actors	in	the	scene.	It	is	also	very	important	to	update	the	documents	as	any	change	occurs	in	the	database	as	well.

This	is	what	most	programmers	mean	when	using	the	term	software	documentation.	When	creating	software,	code	alone	is	insufficient.	There	must	be	some	text	along	with	it	to	describe
various	 aspects	 of	 its	 intended	operation.	 It	 is	 important	 for	 the	 code	documents	 to	be	 thorough,	but	not	 so	verbose	 that	 it	 becomes	difficult	 to	maintain	 them.	Several	How-to	 and
overview	documentation	are	found	specific	to	the	software	application	or	software	product	being	documented	by	API	Writers.	This	documentation	may	be	used	by	developers,	testers	and
also	 the	end	customers	or	 clients	using	 this	 software	application.	Today,	we	 see	 lot	of	high	end	applications	 in	 the	 field	of	power,	 energy,	 transportation,	networks,	aerospace,	 safety,
security,	industry	automation	and	a	variety	of	other	domains.	Technical	documentation	has	become	important	within	such	organizations	as	the	basic	and	advanced	level	of	information
may	change	over	a	period	of	time	with	architecture	changes.	Hence,	technical	documentation	has	gained	lot	of	importance	in	recent	times,	especially	in	the	software	field.

Often,	tools	such	as	Doxygen,	NDoc,	javadoc,	EiffelStudio,	Sandcastle,	ROBODoc,	POD,	TwinText,	or	Universal	Report	can	be	used	to	auto-generate	the	code	documents—that	is,	they
extract	the	comments	and	software	contracts,	where	available,	from	the	source	code	and	create	reference	manuals	in	such	forms	as	text	or	HTML	files.	Code	documents	are	often	organized
into	a	reference	guide	style,	allowing	a	programmer	to	quickly	look	up	an	arbitrary	function	or	class.

The	 idea	 of	 auto-generating	 documentation	 is	 attractive	 to	 programmers	 for	 various	 reasons.	 For	 example,	 because	 it	 is	 extracted	 from	 the	 source	 code	 itself	 (for	 example,	 through
comments),	the	programmer	can	write	it	while	referring	to	the	code,	and	use	the	same	tools	used	to	create	the	source	code	to	make	the	documentation.	This	makes	it	much	easier	to	keep
the	documentation	up-to-date.

Of	course,	a	downside	is	that	only	programmers	can	edit	this	kind	of	documentation,	and	it	depends	on	them	to	refresh	the	output	(for	example,	by	running	a	cron	job	to	update	the
documents	nightly).	Some	would	characterize	this	as	a	pro	rather	than	a	con.

Donald	Knuth	has	insisted	on	the	fact	that	documentation	can	be	a	very	difficult	afterthought	process	and	has	advocated	literate	programming,	writing	at	the	same	time	and	location	as
the	source	code	and	extracted	by	automatic	means.

Elucidative	 Programming	 is	 the	 result	 of	 practical	 applications	 of	 Literate	 Programming	 in	 real	 programming	 contexts.	 The	 Elucidative	 paradigm	 proposes	 that	 source	 code	 and
documentation	be	stored	separately.	This	paradigm	was	inspired	by	the	same	experimental	findings	that	produced	Kelp
create	and	access	information	that	is	not	going	to	be	part	of	the	source	file	 itself.	Such	annotations	are	usually	part	of	several	software	development	activities,	such	as	code	walks	and
porting,	 where	 third	 party	 source	 code	 is	 analysed	 in	 a	 functional	 way.	 Annotations	 can	 therefore	 help	 the	 developer	 during	 any	 stage	 of	 software	 development	 where	 a	 formal
documentation	system	would	hinder	progress.	Kelp	(http://kelp.sf.net/)	stores	annotations	in	separate	files,	linking	the	information	to	the	source	code	dynamically.

Unlike	code	documents,	user	documents	are	usually	far	more	diverse	with	respect	to	the	source	code	of	the	program,	and	instead	simply	describe	how	it	is	used.

In	the	case	of	a	software	library,	the	code	documents	and	user	documents	could	be	effectively	equivalent	and	are	worth	conjoining,	but	for	a	general	application	this	is	not	often	true.

Typically,	the	user	documentation	describes	each	feature	of	the	program,	and	assists	the	user	in	realizing	these	features.	A	good	user	document	can	also	go	so	far	as	to	provide	thorough
troubleshooting	assistance.	It	is	very	important	for	user	documents	to	not	be	confusing,	and	for	them	to	be	up	to	date.	User	documents	need	not	be	organized	in	any	particular	way,	but	it
is	very	important	for	them	to	have	a	thorough	index.	Consistency	and	simplicity	are	also	very	valuable.	User	documentation	is	considered	to	constitute	a	contract	specifying	what	the
software	will	do.	API	Writers	are	very	well	accomplished	towards	writing	good	user	documents	as	they	would	be	well	aware	of	the	software	architecture	and	programming	techniques	used.
See	also	Technical	Writing.

There	are	three	broad	ways	in	which	user	documentation	can	be	organized.

1.	 Tutorial:	A	tutorial	approach	is	considered	the	most	useful	for	a	new	user,	in	which	they	are	guided	through	each	step	of	accomplishing	particular	tasks	
2.	 Thematic:	A	thematic	approach,	where	chapters	or	sections	concentrate	on	one	particular	area	of	interest,	is	of	more	general	use	to	an	intermediate	user.	Some	authors	prefer	to
convey	their	ideas	through	a	knowledge	based	article	to	facilitating	the	user	needs.	This	approach	is	usually	practiced	by	a	dynamic	industry,	such	as	Information	technology,	where	the
user	population	is	largely	correlated	with	the	troubleshooting	demands	[2],	[3].

3.	 List	or	Reference:	The	final	type	of	organizing	principle	is	one	in	which	commands	or	tasks	are	simply	listed	alphabetically	or	logically	grouped,	often	via	cross-referenced	indexes.
This	latter	approach	is	of	greater	use	to	advanced	users	who	know	exactly	what	sort	of	information	they	are	looking	for.

A	common	complaint	among	users	regarding	software	documentation	is	that	only	one	of	these	three	approaches	was	taken	to	the	near-exclusion	of	the	other	two.	It	is	common	to	limit
provided	software	documentation	for	personal	computers	to	online	help	that	give	only	reference	information	on	commands	or	menu	items.	The	job	of	tutoring	new	users	or	helping	more
experienced	users	get	the	most	out	of	a	program	is	left	to	private	publishers,	who	are	often	given	significant	assistance	by	the	software	developer.

For	many	applications	it	is	necessary	to	have	some	promotional	materials	to	encourage	casual	observers	to	spend	more	time	learning	about	the	product.	This	form	of	documentation	has
three	purposes:-

1.	 To	excite	the	potential	user	about	the	product	and	instill	in	them	a	desire	for	becoming	more	involved	with	it.
2.	 To	inform	them	about	what	exactly	the	product	does,	so	that	their	expectations	are	in	line	with	what	they	will	be	receiving.
3.	 To	explain	the	position	of	this	product	with	respect	to	other	alternatives.
One	good	marketing	technique	is	to	provide	clear	and	memorable	catch	phrases	that	exemplify	the	point	we	wish	to	convey,	and	also	emphasize	the	interoperability	of	the	program	with
anything	else	provided	by	the	manufacturer.

1.	 Woelz,	Carlos.	"The	KDE	Documentation	Primer".	http://i18n.kde.org/docs/doc-primer/index.html.	Retrieved	15	June	2009
2.	 Microsoft.	"Knowledge	Base	Articles	for	Driver	Development".	http://www.microsoft.com/whdc/driver/kernel/kb-drv.mspx
3.	 Prekaski,	Todd.	"Building	web	and	Adobe	AIR	applications	from	a	shared	Flex	code	base".	http://www.adobe.com/devnet/air/flex/articles/flex_air_codebase.html
2009.

Technical	documentation

User	documentation

Marketing	documentation

Notes

http://kelp.sf.net/
http://kelp.sf.net/
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-kbad-205
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-bwaa-206
http://i18n.kde.org/docs/doc-primer/index.html
http://i18n.kde.org/docs/doc-primer/index.html
http://www.microsoft.com/whdc/driver/kernel/kb-drv.mspx
http://www.microsoft.com/whdc/driver/kernel/kb-drv.mspx
http://www.adobe.com/devnet/air/flex/articles/flex_air_codebase.html
http://www.adobe.com/devnet/air/flex/articles/flex_air_codebase.html

www.manaraa.com

kelp	(http://kelp.sf.net/)	-	a	source	code	annotation	framework	for	architectural,	design	and	technical	documentation.
ISO	documentation	standards	committee	(http://isotc.iso.org/livelink/livelink?func=ll&objId=8914719&objAction=browse&sort=name)
Standardization	committee	which	develops	user	documentation	standards.

Testing

Software	testing	 is	an	 investigation	conducted	to	provide	stakeholders	with	 information	about	the	quality	of	the	product	or	service	under	test.
objective,	independent	view	of	the	software	to	allow	the	business	to	appreciate	and	understand	the	risks	of	software	implementation.	Test	techniques	include,	but	are	not	limited	to,	the
process	of	executing	a	program	or	application	with	the	intent	of	finding	software	bugs.

Software	testing	can	also	be	stated	as	the	process	of	validating	and	verifying	that	a	software	program/application/product:

1.	 meets	the	business	and	technical	requirements	that	guided	its	design	and	development;
2.	 works	as	expected;	and
3.	 can	be	implemented	with	the	same	characteristics.
Software	testing,	depending	on	the	testing	method	employed,	can	be	implemented	at	any	time	in	the	development	process.	However,	most	of	the	test	effort	occurs	after	the	requirements
have	been	defined	and	the	coding	process	has	been	completed.	As	such,	the	methodology	of	the	test	is	governed	by	the	software	development	methodology	adopted.

Different	 software	 development	models	 will	 focus	 the	 test	 effort	 at	 different	 points	 in	 the	 development	 process.	 Newer	 development	models,	 such	 as	 Agile,	 often	 employ	 test	 driven
development	and	place	an	increased	portion	of	the	testing	in	the	hands	of	the	developer,	before	it	reaches	a	formal	team	of	testers.	In	a	more	traditional	model,	most	of	the	test	execution
occurs	after	the	requirements	have	been	defined	and	the	coding	process	has	been	completed.

Testing	can	never	completely	identify	all	the	defects	within	software.	Instead,	it	furnishes	a	criticism	or	comparison
principles	or	mechanisms	by	which	someone	might	recognize	a	problem.	These	oracles	may	include	(but	are	not	limited	to)	specifications,	contracts,
of	the	same	product,	inferences	about	intended	or	expected	purpose,	user	or	customer	expectations,	relevant	standards,	applicable	laws,	or	other	criteria.

Every	software	product	has	a	target	audience.	For	example,	the	audience	for	video	game	software	is	completely	different	from	banking	software.	Therefore,	when	an	organization	develops
or	 otherwise	 invests	 in	 a	 software	 product,	 it	 can	 assess	whether	 the	 software	 product	will	 be	 acceptable	 to	 its	 end	users,	 its	 target	 audience,	 its	 purchasers,	 and	 other	 stakeholders.
Software	testing	is	the	process	of	attempting	to	make	this	assessment.

A	study	conducted	by	NIST	in	2002	reports	that	software	bugs	cost	the	U.S.	economy	$59.5	billion	annually.	More	than	a	third	of	this	cost	could	be	avoided	if	better	software	testing	was
performed.[3]

The	separation	of	debugging	from	testing	was	initially	introduced	by	Glenford	J.	Myers	in	1979.[4]	Although	his	attention	was	on	breakage	testing	("a	successful	test	is	one	that	finds	a
bug"[4][5])	it	illustrated	the	desire	of	the	software	engineering	community	to	separate	fundamental	development	activities,	such	as	debugging,	from	that	of	verification.	Dave	Gelperin	and
William	C.	Hetzel	classified	in	1988	the	phases	and	goals	in	software	testing	in	the	following	stages:[6]

Until	1956	-	Debugging	oriented[7]

1957–1978	-	Demonstration	oriented[8]

1979–1982	-	Destruction	oriented[9]

1983–1987	-	Evaluation	oriented[10]

1988–2000	-	Prevention	oriented[11]

A	primary	purpose	of	testing	is	to	detect	software	failures	so	that	defects	may	be	discovered	and	corrected.	This	is	a	non-trivial	pursuit.	Testing	cannot	establish	that	a	product	functions
properly	under	all	conditions	but	can	only	establish	that	it	does	not	function	properly	under	specific	conditions.[12]	The	scope	of	software	testing	often	includes	examination	of	code	as	well
as	execution	of	that	code	in	various	environments	and	conditions	as	well	as	examining	the	aspects	of	code:	does	it	do	what	it	is	supposed	to	do	and	do	what	it	needs	to	do.	In	the	current
culture	of	software	development,	a	testing	organization	may	be	separate	from	the	development	team.	There	are	various	roles	for	testing	team	members.	Information	derived	from	software
testing	may	be	used	to	correct	the	process	by	which	software	is	developed.[13]

Functional	testing	refers	to	activities	that	verify	a	specific	action	or	function	of	the	code.	These	are	usually	found	in	the	code	requirements	documentation,	although	some	development
methodologies	work	from	use	cases	or	user	stories.	Functional	tests	tend	to	answer	the	question	of	"can	the	user	do	this"	or	"does	this	particular	feature	work".

Non-functional	testing	refers	to	aspects	of	the	software	that	may	not	be	related	to	a	specific	function	or	user	action,	such	as	scalability	or	security.	Non-functional	testing	tends	to	answer
such	questions	as	"how	many	people	can	log	in	at	once".

External	links

Introduction

Overview

History

Software	testing	topics

Scope

Functional	vs	non-functional	testing

Defects	and	failures

http://kelp.sf.net/
http://isotc.iso.org/livelink/livelink?func=ll&objId=8914719&objAction=browse&sort=name
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-209
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Myers_1979-210
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Myers_1979-210
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-211
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-212
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-213
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-214
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-215
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-216
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Gelperin_1988-217
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Kaner1-218
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-kolawa-219

www.manaraa.com

Not	all	 software	defects	 are	 caused	by	 coding	 errors.	One	 common	 source	of	 expensive	defects	 is	 caused	by	 requirement	gaps,	 e.g.,	unrecognized	 requirements,	 that	 result	 in	 errors	 of
omission	by	the	program	designer.[14]	A	common	source	of	requirements	gaps	is	non-functional	requirements	such	as	testability,	scalability,	maintainability,	usability,	performance,	and
security.

Software	faults	occur	through	the	following	processes.	A	programmer	makes	an	error	(mistake),	which	results	in	a	defect	(fault,	bug)	in	the	software	source	code.	If	this	defect	is	executed,
in	certain	situations	the	system	will	produce	wrong	results,	causing	a	failure.[15]	Not	all	defects	will	necessarily	result	in	failures.	For	example,	defects	in	dead	code	will	never	result	in
failures.	A	 defect	 can	 turn	 into	 a	 failure	when	 the	 environment	 is	 changed.	 Examples	 of	 these	 changes	 in	 environment	 include	 the	 software	 being	 run	 on	 a	 new	 hardware	 platform,
alterations	in	source	data	or	interacting	with	different	software.[15]	A	single	defect	may	result	in	a	wide	range	of	failure	symptoms.

It	is	commonly	believed	that	the	earlier	a	defect	is	found	the	cheaper	it	is	to	fix	it.[16]	The	following	table	shows	the	cost	of	fixing	the	defect	depending	on	the	stage	it	was	found.
example,	if	a	problem	in	the	requirements	is	found	only	post-release,	then	it	would	cost	10–100	times	more	to	fix	than	if	it	had	already	been	found	by	the	requirements	review.

Cost	to	fix	a	defect
Time	detected

Requirements Architecture Construction System	test

Time	introduced

Requirements 1× 3× 5–10× 10×

Architecture - 1× 10× 15×

Construction - - 1× 10×

A	common	cause	of	software	failure	(real	or	perceived)	is	a	lack	of	compatibility	with	other	application	software,	operating	systems	(or	operating	system	versions,	old	or	new),	or	target
environments	that	differ	greatly	from	the	original	(such	as	a	terminal	or	GUI	application	intended	to	be	run	on	the	desktop	now	being	required	to	become	a	web	application,	which	must
render	in	a	web	browser).	For	example,	in	the	case	of	a	lack	of	backward	compatibility,	this	can	occur	because	the	programmers	develop	and	test	software	only	on	the	latest	version	of	the
target	environment,	which	not	all	users	may	be	running.	This	results	in	the	unintended	consequence	that	the	latest	work	may	not	function	on	earlier	versions	of	the	target	environment,	or
on	older	hardware	that	earlier	versions	of	the	target	environment	was	capable	of	using.	Sometimes	such	issues	can	be	fixed	by	proactively	abstracting	operating	system	functionality	into	a
separate	program	module	or	library.

A	very	fundamental	problem	with	software	testing	is	that	testing	under	all	combinations	of	inputs	and	preconditions	(initial	state)	is	not	feasible,	even	with	a	simple	product.
means	that	the	number	of	defects	in	a	software	product	can	be	very	large	and	defects	that	occur	infrequently	are	difficult	to	find	in	testing.	More	significantly,	non-functional	dimensions	of
quality	 (how	 it	 is	 supposed	 to	be	versus	what	 it	 is	 supposed	 to	do)—usability,	 scalability,	performance,	 compatibility,	 reliability—can	be	highly	 subjective;	 something	 that	 constitutes
sufficient	value	to	one	person	may	be	intolerable	to	another.

There	are	many	approaches	to	software	testing.	Reviews,	walkthroughs,	or	inspections	are	considered	as	static	testing,	whereas	actually	executing	programmed	code	with	a	given	set	of	test
cases	is	referred	to	as	dynamic	testing.	Static	testing	can	be	(and	unfortunately	in	practice	often	is)	omitted.	Dynamic	testing	takes	place	when	the	program	itself	is	used	for	the	first	time
(which	is	generally	considered	the	beginning	of	the	testing	stage).	Dynamic	testing	may	begin	before	the	program	is	100%	complete	in	order	to	test	particular	sections	of	code	(modules	or
discrete	 functions).	Typical	 techniques	 for	this	are	either	using	stubs/drivers	or	execution	 from	a	debugger	environment.	For	example,	 spreadsheet	programs	are,	by	their	very	nature,
tested	to	a	large	extent	interactively	("on	the	fly"),	with	results	displayed	immediately	after	each	calculation	or	text	manipulation.

Software	testing	is	used	in	association	with	verification	and	validation:[19]

Verification:	Have	we	built	the	software	right?	(i.e.,	does	it	match	the	specification).
Validation:	Have	we	built	the	right	software?	(i.e.,	is	this	what	the	customer	wants).

The	terms	verification	and	validation	are	commonly	used	interchangeably	in	the	industry;	it	is	also	common	to	see	these	two	terms	incorrectly	defined.	According	to	the	IEEE	Standard
Glossary	of	Software	Engineering	Terminology:

Verification	is	the	process	of	evaluating	a	system	or	component	to	determine	whether	the	products	of	a	given	development	phase	satisfy	the	conditions	imposed	at	the	start	of	that
phase.
Validation	is	the	process	of	evaluating	a	system	or	component	during	or	at	the	end	of	the	development	process	to	determine	whether	it	satisfies	specified	requirements.

Software	testing	can	be	done	by	software	testers.	Until	the	1980s	the	term	"software	tester"	was	used	generally,	but	later	it	was	also	seen	as	a	separate	profession.	Regarding	the	periods
and	the	different	goals	in	software	testing,[20]	different	roles	have	been	established:	manager,	test	lead,	test	designer,	

Though	controversial,	 software	 testing	 is	 a	part	of	 the	 software	quality	assurance	 (SQA)	process.[12]	 In	SQA,	 software	process	 specialists	 and	auditors	 are	 concerned	 for	 the	 software
development	process	rather	than	just	the	artefacts	such	as	documentation,	code	and	systems.	They	examine	and	change	the	software	engineering	process	itself	to	reduce	the	amount	of
faults	that	end	up	in	the	delivered	software:	the	so-called	defect	rate.

What	constitutes	an	"acceptable	defect	rate"	depends	on	the	nature	of	the	software;	A	flight	simulator	video	game	would	have	much	higher	defect	tolerance	than	software	for	an	actual
airplane.

Finding	faults	early

Compatibility

Input	combinations	and	preconditions

Static	vs.	dynamic	testing

Software	verification	and	validation

The	software	testing	team

Software	quality	assurance	(SQA)

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-220
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-ctfl-221
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-ctfl-221
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-222
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-tran-225
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-226
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Kaner1-218

www.manaraa.com

Although	there	are	close	links	with	SQA,	testing	departments	often	exist	independently,	and	there	may	be	no	SQA	function	in	some	companies.

Software	testing	is	a	task	intended	to	detect	defects	in	software	by	contrasting	a	computer	program's	expected	results	with	its	actual	results	for	a	given	set	of	inputs.	By	contrast,	QA
(quality	assurance)	is	the	implementation	of	policies	and	procedures	intended	to	prevent	defects	from	occurring	in	the	first	place.

Software	testing	methods	are	traditionally	divided	into	white-	and	black-box	testing.	These	two	approaches	are	used	to	describe	the	point	of	view	that	a	test	engineer	takes	when	designing
test	cases.

White	box	testing	is	when	the	tester	has	access	to	the	internal	data	structures	and	algorithms	including	the	code	that	implement	these.

Types	of	white	box	testing
The	following	types	of	white	box	testing	exist:

API	testing	(application	programming	interface)	-	testing	of	the	application	using	public	and	private	APIs
Code	coverage	-	creating	tests	to	satisfy	some	criteria	of	code	coverage	(e.g.,	the	test	designer	can	create	tests	to	cause	all	statements	in	the	program	to	be	executed	at	least	once)
Fault	injection	methods	-	improving	the	coverage	of	a	test	by	introducing	faults	to	test	code	paths
Mutation	testing	methods
Static	testing	-	White	box	testing	includes	all	static	testing

Test	coverage
White	box	testing	methods	can	also	be	used	to	evaluate	the	completeness	of	a	test	suite	that	was	created	with	black	box	testing	methods.	This	allows	the	software	team	to	examine
parts	of	a	system	that	are	rarely	tested	and	ensures	that	the	most	important	function	points	have	been	tested.[21]

Two	common	forms	of	code	coverage	are:

Function	coverage,	which	reports	on	functions	executed
Statement	coverage,	which	reports	on	the	number	of	lines	executed	to	complete	the	test

They	both	return	a	code	coverage	metric,	measured	as	a	percentage.

Black	box	testing	treats	the	software	as	a	"black	box"—without	any	knowledge	of	internal	implementation.	Black	box	testing	methods	include:	equivalence	partitioning,	boundary	value
analysis,	all-pairs	testing,	fuzz	testing,	model-based	testing,	exploratory	testing	and	specification-based	testing.

Specification-based	testing:	Specification-based	testing	aims	to	test	the	functionality	of	software	according	to	the	applicable	requirements.
and	only	sees	the	output	from,	the	test	object.	This	level	of	testing	usually	requires	thorough	test	cases	to	be	provided	to	the	tester,	who	then	can	simply	verify	that	for	a	given	input,
the	output	value	(or	behavior),	either	"is"	or	"is	not"	the	same	as	the	expected	value	specified	in	the	test	case.

Specification-based	testing	is	necessary,	but	it	is	insufficient	to	guard	against	certain	risks.[23]

Advantages	and	disadvantages:	The	black	box	tester	has	no	"bonds"	with	the	code,	and	a	tester's	perception	is	very	simple:	a	code	
and	you	shall	receive,"	black	box	testers	find	bugs	where	programmers	do	not.	On	the	other	hand,	black	box	testing	has	been	said	to	be	"like	a	walk	in	a	dark	labyrinth	without	a
flashlight,"	because	the	tester	doesn't	know	how	the	software	being	tested	was	actually	constructed.	As	a	result,	there	are	situations	when	(1)	a	tester	writes	many	test	cases	to	check
something	that	could	have	been	tested	by	only	one	test	case,	and/or	(2)	some	parts	of	the	back-end	are	not	tested	at	all.

Therefore,	black	box	testing	has	the	advantage	of	"an	unaffiliated	opinion",	on	the	one	hand,	and	the	disadvantage	of	"blind	exploring",	on	the	other.	

Grey	box	testing	is	the	combination	of	black	box	testing	and	white	box	testing.	Grey	box	testing	(American	spelling:	
structures	and	algorithms	for	purposes	of	designing	the	test	cases,	but	testing	at	the	user,	or	black-box	level.	Manipulating	input	data	and	formatting	output	do	not	qualify	as	grey	box,
because	the	input	and	output	are	clearly	outside	of	the	"black-box"	that	we	are	calling	the	system	under	test.	This	distinction	is	particularly	important	when	conducting	integration	testing
between	two	modules	of	code	written	by	two	different	developers,	where	only	the	interfaces	are	exposed	for	test.	However,	modifying	a	data	repository	does	qualify	as	grey	box,	as	the	user
would	not	normally	be	able	to	change	the	data	outside	of	the	system	under	test.	Grey	box	testing	may	also	include	reverse	engineering	to	determine,	for	instance,	boundary	values	or	error
messages.

Tests	are	frequently	grouped	by	where	they	are	added	in	the	software	development	process,	or	by	the	level	of	specificity	of	the	test.

Unit	testing	refers	to	tests	that	verify	the	functionality	of	a	specific	section	of	code,	usually	at	the	function	level.	In	an	object-oriented	environment,	this	is	usually	at	the	class	level,	and

Testing	methods

The	box	approach

White	box	testing

Black	box	testing

Grey	box	testing

Testing	levels

Unit	testing

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-227
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-229

www.manaraa.com

Unit	testing	refers	to	tests	that	verify	the	functionality	of	a	specific	section	of	code,	usually	at	the	function	level.	In	an	object-oriented	environment,	this	is	usually	at	the	class	level,	and
the	minimal	unit	tests	include	the	constructors	and	destructors.[25]

These	type	of	tests	are	usually	written	by	developers	as	they	work	on	code	(white-box	style),	to	ensure	that	the	specific	function	is	working	as	expected.	One	function	might	have	multiple
tests,	to	catch	corner	cases	or	other	branches	in	the	code.	Unit	testing	alone	cannot	verify	the	functionality	of	a	piece	of	software,	but	rather	is	used	to	assure	that	the	building	blocks	the
software	uses	work	independently	of	each	other.

Unit	testing	is	also	called	component	testing.

Integration	testing	 is	any	type	of	software	testing	that	seeks	to	verify	the	interfaces	between	components	against	a	software	design.	Software	components	may	be	integrated	in	an
iterative	way	or	all	together	("big	bang").	Normally	the	former	is	considered	a	better	practice	since	it	allows	interface	issues	to	be	localised	more	quickly	and	fixed.

Integration	 testing	 works	 to	 expose	 defects	 in	 the	 interfaces	 and	 interaction	 between	 integrated	 components	 (modules).	 Progressively	 larger	 groups	 of	 tested	 software	 components
corresponding	to	elements	of	the	architectural	design	are	integrated	and	tested	until	the	software	works	as	a	system.

System	testing	tests	a	completely	integrated	system	to	verify	that	it	meets	its	requirements.[27]

System	integration	testing	verifies	that	a	system	is	integrated	to	any	external	or	third-party	systems	defined	in	the	system	requirements.

Regression	testing	 focuses	on	 finding	defects	after	a	major	code	change	has	occurred.	Specifically,	 it	seeks	to	uncover	software	regressions,	or	old	bugs	that	have	come	back.	Such
regressions	occur	whenever	software	functionality	that	was	previously	working	correctly	stops	working	as	intended.	Typically,	regressions	occur	as	an	unintended	consequence	of	program
changes,	when	 the	newly	developed	part	of	 the	 software	 collides	with	 the	previously	 existing	 code.	Common	methods	of	 regression	 testing	 include	 re-running	previously	 run	 tests	and
checking	whether	previously	fixed	faults	have	re-emerged.	The	depth	of	testing	depends	on	the	phase	in	the	release	process	and	the	risk	of	the	added	features.	They	can	either	be	complete,
for	changes	added	late	in	the	release	or	deemed	to	be	risky,	to	very	shallow,	consisting	of	positive	tests	on	each	feature,	if	the	changes	are	early	in	the	release	or	deemed	to	be	of	low	risk.

Acceptance	testing	can	mean	one	of	two	things:

1.	 A	smoke	test	is	used	as	an	acceptance	test	prior	to	introducing	a	new	build	to	the	main	testing	process,	i.e.	before	integration	or	regression.
2.	 Acceptance	testing	performed	by	the	customer,	often	in	their	lab	environment	on	their	own	hardware,	is	known	as	user	acceptance	testing	(UAT).	Acceptance	testing	may	be	performed
as	part	of	the	hand-off	process	between	any	two	phases	of	development.[citation	needed]

Alpha	testing	is	simulated	or	actual	operational	testing	by	potential	users/customers	or	an	independent	test	team	at	the	developers'	site.	Alpha	testing	is	often	employed	for	off-the-shelf
software	as	a	form	of	internal	acceptance	testing,	before	the	software	goes	to	beta	testing.[28]

Beta	testing	comes	after	alpha	testing	and	can	be	considered	a	form	of	external	user	acceptance	testing.	Versions	of	the	software,	known	as	beta	versions,	are	released	to	a	limited	audience
outside	of	the	programming	team.	The	software	is	released	to	groups	of	people	so	that	further	testing	can	ensure	the	product	has	few	faults	or	bugs.	Sometimes,	beta	versions	are	made
available	to	the	open	public	to	increase	the	feedback	field	to	a	maximal	number	of	future	users.[citation	needed]

Special	methods	exist	to	test	non-functional	aspects	of	software.	In	contrast	to	functional	testing,	which	establishes	the	correct	operation	of	the	software	(correct	in	that	it	matches	the
expected	behavior	defined	in	the	design	requirements),	non-functional	testing	verifies	that	the	software	functions	properly	even	when	it	receives	invalid	or	unexpected	inputs.	Software	fault
injection,	in	the	form	of	fuzzing,	is	an	example	of	non-functional	testing.	Non-functional	testing,	especially	for	software,	is	designed	to	establish	whether	the	device	under	test	can	tolerate
invalid	or	unexpected	inputs,	thereby	establishing	the	robustness	of	input	validation	routines	as	well	as	error-handling	routines.	Various	commercial	non-functional	testing	tools	are	linked
from	the	software	fault	injection	page;	there	are	also	numerous	open-source	and	free	software	tools	available	that	perform	non-functional	testing.

Performance	testing	is	executed	to	determine	how	fast	a	system	or	sub-system	performs	under	a	particular	workload.	It	can	also	serve	to	validate	and	verify	other	quality	attributes	of	the
system,	 such	 as	 scalability,	 reliability	 and	 resource	 usage.	 Load	 testing	 is	 primarily	 concerned	with	 testing	 that	 can	 continue	 to	 operate	 under	 a	 specific	 load,	whether	 that	 be	 large
quantities	of	data	or	a	large	number	of	users.	This	is	generally	referred	to	as	software	scalability.	The	related	load	testing	activity	of	when	performed	as	a	non-functional	activity	is	often
referred	to	as	endurance	testing.

Volume	testing	is	a	way	to	test	functionality.	Stress	testing	is	a	way	to	test	reliability.	Load	testing	is	a	way	to	test	performance.	There	is	little	agreement	on	what	the	specific	goals	of	load
testing	are.	The	terms	load	testing,	performance	testing,	reliability	testing,	and	volume	testing,	are	often	used	interchangeably.

Stability	testing	checks	to	see	if	the	software	can	continuously	function	well	in	or	above	an	acceptable	period.	This	activity	of	non-functional	software	testing	is	often	referred	to	as	load	(or
endurance)	testing.

Usability	testing	is	needed	to	check	if	the	user	interface	is	easy	to	use	and	understand.It	approach	towards	the	use	of	the	application.

Integration	testing

System	testing

System	integration	testing

Regression	testing

Acceptance	testing

Alpha	testing

Beta	testing

Non-functional	testing

Software	performance	testing	and	load	testing

Stability	testing

Usability	testing

Security	testing

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-231
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-ieee-233
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-234
https://en.wikibooks.org/wiki/Wikibooks:OR

www.manaraa.com

Security	testing	is	essential	for	software	that	processes	confidential	data	to	prevent	system	intrusion	by	hackers.

The	general	ability	of	software	to	be	internationalized	and	localized	can	be	automatically	tested	without	actual	translation,	by	using	pseudolocalization.	It	will	verify	that	the	application
still	works,	even	after	it	has	been	translated	into	a	new	language	or	adapted	for	a	new	culture	(such	as	different	currencies	or	time	zones).

Actual	translation	to	human	languages	must	be	tested,	too.	Possible	localization	failures	include:

Software	is	often	localized	by	translating	a	list	of	strings	out	of	context,	and	the	translator	may	choose	the	wrong	translation	for	an	ambiguous	source	string.
If	several	people	translate	strings,	technical	terminology	may	become	inconsistent.
Literal	word-for-word	translations	may	sound	inappropriate,	artificial	or	too	technical	in	the	target	language.
Untranslated	messages	in	the	original	language	may	be	left	hard	coded	in	the	source	code.
Some	messages	may	be	created	automatically	in	run	time	and	the	resulting	string	may	be	ungrammatical,	functionally	incorrect,	misleading	or	confusing.
Software	may	use	a	keyboard	shortcut	which	has	no	function	on	the	source	language's	keyboard	layout,	but	is	used	for	typing	characters	in	the	layout	of	the	target	language.
Software	may	lack	support	for	the	character	encoding	of	the	target	language.
Fonts	and	font	sizes	which	are	appropriate	in	the	source	language,	may	be	inappropriate	in	the	target	language;	for	example,	CJK	characters	may	become	unreadable	if	the	font	is	too
small.
A	string	in	the	target	language	may	be	longer	than	the	software	can	handle.	This	may	make	the	string	partly	invisible	to	the	user	or	cause	the	software	to	fail.
Software	may	lack	proper	support	for	reading	or	writing	bi-directional	text.
Software	may	display	images	with	text	that	wasn't	localized.
Localized	operating	systems	may	have	differently-named	system	configuration	files	and	environment	variables	and	different	formats	for	date	and	currency.

To	avoid	these	and	other	localization	problems,	a	tester	who	knows	the	target	language	must	run	the	program	with	all	the	possible	use	cases	for	translation	to	see	if	the	messages	are
readable,	translated	correctly	in	context	and	don't	cause	failures.

Destructive	testing	attempts	to	cause	the	software	or	a	sub-system	to	fail,	in	order	to	test	its	robustness.

A	common	practice	of	software	testing	is	that	testing	is	performed	by	an	independent	group	of	testers	after	the	functionality	is	developed,	before	it	is	shipped	to	the	customer.
practice	often	results	in	the	testing	phase	being	used	as	a	project	buffer	to	compensate	for	project	delays,	thereby	compromising	the	time	devoted	to	testing.

Another	practice	is	to	start	software	testing	at	the	same	moment	the	project	starts	and	it	is	a	continuous	process	until	the	project	finishes.

In	counterpoint,	some	emerging	software	disciplines	such	as	extreme	programming	and	the	agile	software	development	movement,	adhere	to	a	"test-driven	software	development"	model.	In
this	process,	unit	tests	are	written	first,	by	the	software	engineers	(often	with	pair	programming	in	the	extreme	programming	methodology).	Of	course	these	tests	fail	initially;	as	they	are
expected	 to.	Then	as	code	 is	written	 it	passes	 incrementally	 larger	portions	of	 the	 test	 suites.	The	 test	 suites	are	continuously	updated	as	new	 failure	conditions	and	corner	cases	are
discovered,	and	they	are	integrated	with	any	regression	tests	that	are	developed.	Unit	tests	are	maintained	along	with	the	rest	of	the	software	source	code	and	generally	integrated	into	the
build	process	(with	inherently	interactive	tests	being	relegated	to	a	partially	manual	build	acceptance	process).	The	ultimate	goal	of	this	test	process	is	to	achieve	continuous	deployment
where	software	updates	can	be	published	to	the	public	frequently.	[33]	[34]

Although	variations	exist	between	organizations,	there	is	a	typical	cycle	for	testing.[35]	The	sample	below	is	common	among	organizations	employing	the	Waterfall	development	model.

Requirements	analysis:	Testing	should	begin	in	the	requirements	phase	of	the	software	development	life	cycle.	During	the	design	phase,	testers	work	with	developers	in
determining	what	aspects	of	a	design	are	testable	and	with	what	parameters	those	tests	work.
Test	planning:	Test	strategy,	test	plan,	testbed	creation.	Since	many	activities	will	be	carried	out	during	testing,	a	plan	is	needed.
Test	development:	Test	procedures,	test	scenarios,	test	cases,	test	datasets,	test	scripts	to	use	in	testing	software.
Test	execution:	Testers	execute	the	software	based	on	the	plans	and	test	documents	then	report	any	errors	found	to	the	development	team.
Test	reporting:	Once	testing	is	completed,	testers	generate	metrics	and	make	final	reports	on	their	test	effort	and	whether	or	not	the	software	tested	is	ready	for	release.
Test	result	analysis:	Or	Defect	Analysis,	is	done	by	the	development	team	usually	along	with	the	client,	in	order	to	decide	what	defects	should	be	treated,	fixed,	rejected	(i.e.	found
software	working	properly)	or	deferred	to	be	dealt	with	later.
Defect	Retesting:	Once	a	defect	has	been	dealt	with	by	the	development	team,	it	is	retested	by	the	testing	team.	AKA	Resolution	testing.
Regression	testing:	It	is	common	to	have	a	small	test	program	built	of	a	subset	of	tests,	for	each	integration	of	new,	modified,	or	fixed	software,	in	order	to	ensure	that	the	latest
delivery	has	not	ruined	anything,	and	that	the	software	product	as	a	whole	is	still	working	correctly.
Test	Closure:	Once	the	test	meets	the	exit	criteria,	the	activities	such	as	capturing	the	key	outputs,	lessons	learned,	results,	logs,	documents	related	to	the	project	are	archived	and

Internationalization	and	localization

Destructive	testing

The	testing	process

Traditional	CMMI	or	waterfall	development	model

Agile	or	Extreme	development	model

A	sample	testing	cycle

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-239
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-240
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-241

www.manaraa.com

used	as	a	reference	for	future	projects.

Many	 programming	 groups	 are	 relying	more	 and	more	 on	 automated	 testing,	 especially	 groups	 that	 use	 test-driven	 development.	 There	 are	many	 frameworks	 to	write	 tests	 in,	 and
continuous	integration	software	will	run	tests	automatically	every	time	code	is	checked	into	a	version	control	system.

While	automation	cannot	reproduce	everything	that	a	human	can	do	(and	all	the	ways	they	think	of	doing	it),	it	can	be	very	useful	for	regression	testing.	However,	it	does	require	a	well-
developed	test	suite	of	testing	scripts	in	order	to	be	truly	useful.

Program	testing	and	fault	detection	can	be	aided	significantly	by	testing	tools	and	debuggers.	Testing/debug	tools	include	features	such	as:

Program	monitors,	permitting	full	or	partial	monitoring	of	program	code	including:

Instruction	set	simulator,	permitting	complete	instruction	level	monitoring	and	trace	facilities
Program	animation,	permitting	step-by-step	execution	and	conditional	breakpoint	at	source	level	or	in	machine	code
Code	coverage	reports

Formatted	dump	or	symbolic	debugging,	tools	allowing	inspection	of	program	variables	on	error	or	at	chosen	points
Automated	functional	GUI	testing	tools	are	used	to	repeat	system-level	tests	through	the	GUI
Benchmarks,	allowing	run-time	performance	comparisons	to	be	made
Performance	analysis	(or	profiling	tools)	that	can	help	to	highlight	hot	spots	and	resource	usage

Some	of	these	features	may	be	incorporated	into	an	Integrated	Development	Environment	(IDE).

A	regression	testing	technique	is	to	have	a	standard	set	of	tests,	which	cover	existing	functionality	that	result	in	persistent	tabular	data,	and	to	compare	pre-change	data	to	post-change
data,	where	there	should	not	be	differences,	using	a	tool	like	diffkit.	Differences	detected	indicate	unexpected	functionality	changes	or	"regression".

Usually,	quality	is	constrained	to	such	topics	as	correctness,	completeness,	security,[citation	needed]	but	can	also	include	more	technical	requirements	as	described	under	the	ISO	standard
ISO/IEC	9126,	such	as	capability,	reliability,	efficiency,	portability,	maintainability,	compatibility,	and	usability.

There	are	a	number	of	frequently-used	software	measures,	often	called	metrics,	which	are	used	to	assist	in	determining	the	state	of	the	software	or	the	adequacy	of	the	testing.

Software	testing	process	can	produce	several	artifacts.

Test	plan
A	test	specification	is	called	a	test	plan.	The	developers	are	well	aware	what	test	plans	will	be	executed	and	this	information	is	made	available	to	management	and	the	developers.	The
idea	is	to	make	them	more	cautious	when	developing	their	code	or	making	additional	changes.	Some	companies	have	a	higher-level	document	called	a	test	strategy.

Traceability	matrix
A	traceability	matrix	is	a	table	that	correlates	requirements	or	design	documents	to	test	documents.	It	is	used	to	change	tests	when	the	source	documents	are	changed,	or	to	verify	that
the	test	results	are	correct.

Test	case
A	test	case	normally	consists	of	a	unique	identifier,	requirement	references	from	a	design	specification,	preconditions,	events,	a	series	of	steps	(also	known	as	actions)	to	follow,	input,
output,	expected	result,	and	actual	result.	Clinically	defined	a	test	case	is	an	input	and	an	expected	result.[36]	This	can	be	as	pragmatic	as	'for	condition	x	your	derived	result	is	y',
whereas	other	test	cases	described	in	more	detail	the	input	scenario	and	what	results	might	be	expected.	It	can	occasionally	be	a	series	of	steps	(but	often	steps	are	contained	in	a
separate	test	procedure	that	can	be	exercised	against	multiple	test	cases,	as	a	matter	of	economy)	but	with	one	expected	result	or	expected	outcome.	The	optional	fields	are	a	test	case
ID,	test	step,	or	order	of	execution	number,	related	requirement(s),	depth,	test	category,	author,	and	check	boxes	for	whether	the	test	is	automatable	and	has	been	automated.	Larger
test	cases	may	also	contain	prerequisite	states	or	steps,	and	descriptions.	A	test	case	should	also	contain	a	place	for	the	actual	result.	These	steps	can	be	stored	in	a	word	processor
document,	spreadsheet,	database,	or	other	common	repository.	In	a	database	system,	you	may	also	be	able	to	see	past	test	results,	who	generated	the	results,	and	what	system
configuration	was	used	to	generate	those	results.	These	past	results	would	usually	be	stored	in	a	separate	table.

Test	script
The	test	script	is	the	combination	of	a	test	case,	test	procedure,	and	test	data.	Initially	the	term	was	derived	from	the	product	of	work	created	by	automated	regression	test	tools.
Today,	test	scripts	can	be	manual,	automated,	or	a	combination	of	both.

Test	suite
The	most	common	term	for	a	collection	of	test	cases	is	a	test	suite.	The	test	suite	often	also	contains	more	detailed	instructions	or	goals	for	each	collection	of	test	cases.	It	definitely
contains	a	section	where	the	tester	identifies	the	system	configuration	used	during	testing.	A	group	of	test	cases	may	also	contain	prerequisite	states	or	steps,	and	descriptions	of	the
following	tests.

Test	data

Automated	testing

Testing	tools

Measurement	in	software	testing

Testing	artifacts

https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-242

www.manaraa.com

In	most	cases,	multiple	sets	of	values	or	data	are	used	to	test	the	same	functionality	of	a	particular	feature.	All	the	test	values	and	changeable	environmental	components	are	collected
in	separate	files	and	stored	as	test	data.	It	is	also	useful	to	provide	this	data	to	the	client	and	with	the	product	or	a	project.

Test	harness
The	software,	tools,	samples	of	data	input	and	output,	and	configurations	are	all	referred	to	collectively	as	a	test	harness.

Several	 certification	 programs	 exist	 to	 support	 the	 professional	 aspirations	 of	 software	 testers	 and	 quality	 assurance	 specialists.	No	 certification	 currently	 offered	 actually	 requires	 the
applicant	to	demonstrate	the	ability	to	test	software.	No	certification	is	based	on	a	widely	accepted	body	of	knowledge.	This	has	led	some	to	declare	that	the	testing	field	is	not	ready	for
certification.[37]	 Certification	 itself	 cannot	 measure	 an	 individual's	 productivity,	 their	 skill,	 or	 practical	 knowledge,	 and	 cannot	 guarantee	 their	 competence,	 or	 professionalism	 as	 a
tester.[38]

Software	testing	certification	types

Exam-based:	Formalized	exams,	which	need	to	be	passed;	can	also	be	learned	by	self-study	[e.g.,	for	ISTQB	or	QAI]
Education-based:	Instructor-led	sessions,	where	each	course	has	to	be	passed	[e.g.,	International	Institute	for	Software	Testing	(IIST)].

Testing	certifications

Certified	Associate	in	Software	Testing	(CAST)	offered	by	the	Quality	Assurance	Institute	(QAI)[40]

CATe	offered	by	the	International	Institute	for	Software	Testing[41]

Certified	Manager	in	Software	Testing	(CMST)	offered	by	the	Quality	Assurance	Institute	(QAI)[40]

Certified	Software	Tester	(CSTE)	offered	by	the	Quality	Assurance	Institute	(QAI)[40]

Certified	Software	Test	Professional	(CSTP)	offered	by	the	International	Institute	for	Software	Testing[41]

CSTP	(TM)	(Australian	Version)	offered	by	K.	J.	Ross	&	Associates[42]

ISEB	offered	by	the	Information	Systems	Examinations	Board
ISTQB	Certified	Tester,	Foundation	Level	(CTFL)	offered	by	the	International	Software	Testing	Qualification	Board	
ISTQB	Certified	Tester,	Advanced	Level	(CTAL)	offered	by	the	International	Software	Testing	Qualification	Board	
TMPF	TMap	Next	Foundation	offered	by	the	Examination	Institute	for	Information	Science[45]

TMPA	TMap	Next	Advanced	offered	by	the	Examination	Institute	for	Information	Science[45]

Quality	assurance	certifications

CMSQ	offered	by	the	Quality	Assurance	Institute	(QAI).[40]

CSQA	offered	by	the	Quality	Assurance	Institute	(QAI)[40]

CSQE	offered	by	the	American	Society	for	Quality	(ASQ)[46]

CQIA	offered	by	the	American	Society	for	Quality	(ASQ)[46]

Some	of	the	major	software	testing	controversies	include:

What	constitutes	responsible	software	testing?	
Members	of	the	"context-driven"	school	of	testing[47]	believe	that	there	are	no	"best	practices"	of	testing,	but	rather	that	testing	is	a	set	of	skills	that	allow	the	tester	to	select	or	invent
testing	practices	to	suit	each	unique	situation.[48]

Agile	vs.	traditional	
Should	testers	learn	to	work	under	conditions	of	uncertainty	and	constant	change	or	should	they	aim	at	process	"maturity"?	The	agile	testing	movement	has	received	growing
popularity	since	2006	mainly	in	commercial	circles,[49][50]	whereas	government	and	military[51]	software	providers	use	this	methodology	but	also	the	traditional	test-last	models	(e.g.	in
the	Waterfall	model).[citation	needed]

Exploratory	test	vs.	scripted[52]	
Should	tests	be	designed	at	the	same	time	as	they	are	executed	or	should	they	be	designed	beforehand?

Manual	testing	vs.	automated	
Some	writers	believe	that	test	automation	is	so	expensive	relative	to	its	value	that	it	should	be	used	sparingly.[53]

should	write	unit-tests	of	the	XUnit	type	before	coding	the	functionality.	The	tests	then	can	be	considered	as	a	way	to	capture	and	implement	the	requirements.

Certifications

Controversy

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-243
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-244
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Quality_Assurance_Institute-246
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-testinginstitute.com-247
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Quality_Assurance_Institute-246
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Quality_Assurance_Institute-246
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-testinginstitute.com-247
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-248
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-exin-exams.com-251
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-exin-exams.com-251
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Quality_Assurance_Institute-246
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Quality_Assurance_Institute-246
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-American_Society_for_Quality-252
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-American_Society_for_Quality-252
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-253
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-254
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-255
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-256
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-257
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-258
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-259

www.manaraa.com

Software	design	vs.	software	implementation
Should	testing	be	carried	out	only	at	the	end	or	throughout	the	whole	process?

Who	watches	the	watchmen?	
The	idea	is	that	any	form	of	observation	is	also	an	interaction—the	act	of	testing	can	also	affect	that	which	is	being	tested.

1.	 Exploratory	Testing	(http://www.kaner.com/pdfs/ETatQAI.pdf),	Cem	Kaner,	Florida	Institute	of	Technology,	Quality	Assurance	Institute	Worldwide	Annual	Software	Testing
Conference,	Orlando,	FL,	November	2006

2.	 Leitner,	A.,	Ciupa,	I.,	Oriol,	M.,	Meyer,	B.,	Fiva,	A.,	"Contract	Driven	Development	=	Test	Driven	Development	-	Writing	Test	Cases"
ns/cdd_leitner_esec_fse_2007.pdf),	Proceedings	of	ESEC/FSE'07:	European	Software	Engineering	Conference	and	the	ACM	SIGSOFT	Symposium	on	the	Foundations	of	Software
Engineering	2007,	(Dubrovnik,	Croatia),	September	2007

3.	 Software	errors	cost	U.S.	economy	$59.5	billion	annually	(http://www.abeacha.com/NIST_press_release_bugs_cost.htm)
4.	 Myers,	Glenford	J.	(1979).	The	Art	of	Software	Testing.	John	Wiley	and	Sons.	ISBN	0-471-04328-1.
5.	 Company,	People's	Computer	(1987).	"Dr.	Dobb's	journal	of	software	tools	for	the	professional	programmer".	Dr.	Dobb's	journal	of	software	tools	for	the	professional	programmer
(M&T	Pub)	12	(1-6):	116.	http://books.google.com/?id=7RoIAAAAIAAJ.

6.	 Gelperin,	D.;	B.	Hetzel	(1988).	"The	Growth	of	Software	Testing".	CACM	31	(6).	ISSN	0001-0782.
7.	 until	1956	it	was	the	debugging	oriented	period,	when	testing	was	often	associated	to	debugging:	there	was	no	clear	difference	between	testing	and	debugging.
(1988).	"The	Growth	of	Software	Testing".	CACM	31	(6).	ISSN	0001-0782.

8.	 From	1957–1978	there	was	the	demonstration	oriented	period	where	debugging	and	testing	was	distinguished	now	-	in	this	period	it	was	shown,	that	software	satisfies	the	requirements.
Gelperin,	D.;	B.	Hetzel	(1988).	"The	Growth	of	Software	Testing".	CACM	31	(6).	ISSN	0001-0782.

9.	 The	time	between	1979–1982	is	announced	as	the	destruction	oriented	period,	where	the	goal	was	to	find	errors.	
CACM	31	(6).	ISSN	0001-0782.

10.	 1983–1987	is	classified	as	the	evaluation	oriented	period:	intention	here	is	that	during	the	software	lifecycle	a	product	evaluation	is	provided	and	measuring	quality.
Hetzel	(1988).	"The	Growth	of	Software	Testing".	CACM	31	(6).	ISSN	0001-0782.

11.	 From	1988	on	it	was	seen	as	prevention	oriented	period	where	tests	were	to	demonstrate	that	software	satisfies	its	specification,	to	detect	faults	and	to	prevent	faults.
Hetzel	(1988).	"The	Growth	of	Software	Testing".	CACM	31	(6).	ISSN	0001-0782.

12.	 Kaner,	Cem;	Falk,	Jack	and	Nguyen,	Hung	Quoc	(1999).	Testing	Computer	Software,	2nd	Ed..	New	York,	et	al:	John	Wiley	and	Sons,	Inc..	pp.	480	pages.	
Invalid	<ref>	tag;	name	"Kaner1"	defined	multiple	times	with	different	content	Invalid	<ref>
different	content

13.	 Kolawa,	Adam;	Huizinga,	Dorota	(2007).	Automated	Defect	Prevention:	Best	Practices	in	Software	Management
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html.

14.	 Kolawa,	Adam;	Huizinga,	Dorota	(2007).	Automated	Defect	Prevention:	Best	Practices	in	Software	Management
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html.

15.	 Section	1.1.2,	Certified	Tester	Foundation	Level	Syllabus	(http://www.istqb.org/downloads/syllabi/SyllabusFoundation.pdf)
16.	 Kaner,	Cem;	James	Bach,	Bret	Pettichord	(2001).	Lessons	Learned	in	Software	Testing:	A	Context-Driven	Approach
17.	 McConnell,	Steve	(2004).	Code	Complete	(2nd	ed.).	Microsoft	Press.	pp.	960.	ISBN	0-7356-1967-0.
18.	 Principle	2,	Section	1.3,	Certified	Tester	Foundation	Level	Syllabus	(http://www.bcs.org/upload/pdf/istqbsyll.pdf)
19.	 Tran,	Eushiuan	(1999).	"Verification/Validation/Certification".	in	Koopman,	P..	Topics	in	Dependable	Embedded	Systems

http://www.ece.cmu.edu/~koopman/des_s99/verification/index.html.	Retrieved	2008-01-13.
20.	 see	D.	Gelperin	and	W.C.	Hetzel
21.	 Introduction	(http://www.bullseye.com/coverage.html#intro),	Code	Coverage	Analysis,	Steve	Cornett
22.	 Laycock,	G.	T.	(1993)	(PostScript).	The	Theory	and	Practice	of	Specification	Based	Software	Testing.	Dept	of	Computer	Science,	Sheffield	University,	UK

http://www.mcs.le.ac.uk/people/gtl1/thesis.ps.gz.	Retrieved	2008-02-13.
23.	 Bach,	James	(June	1999).	"Risk	and	Requirements-Based	Testing"	(PDF).	Computer	32	(6):	113–114.	http://www.satisfice.com/articles/requirements_based_testing.pdf

2008-08-19.
24.	 Savenkov,	Roman	(2008).	How	to	Become	a	Software	Tester.	Roman	Savenkov	Consulting.	p.	159.	ISBN	978-0-615-23372-7
25.	 Binder,	Robert	V.	(1999).	Testing	Object-Oriented	Systems:	Objects,	Patterns,	and	Tools.	Addison-Wesley	Professional.	p.	45.	
26.	 Beizer,	Boris	(1990).	Software	Testing	Techniques	(Second	ed.).	New	York:	Van	Nostrand	Reinhold.	pp.	21,430.	
27.	 IEEE	(1990).	IEEE	Standard	Computer	Dictionary:	A	Compilation	of	IEEE	Standard	Computer	Glossaries.	New	York:	IEEE.	

References

http://www.kaner.com/pdfs/ETatQAI.pdf
http://se.inf.ethz.ch/people/leitner/publications/cdd_leitner_esec_fse_2007.pdf
http://www.abeacha.com/NIST_press_release_bugs_cost.htm
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-471-04328-1
http://books.google.com/?id=7RoIAAAAIAAJ
http://books.google.com/?id=7RoIAAAAIAAJ
https://en.wikipedia.org/wiki/Cem_Kaner
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.istqb.org/downloads/syllabi/SyllabusFoundation.pdf
https://en.wikipedia.org/wiki/Cem_Kaner
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-7356-1967-0
http://www.bcs.org/upload/pdf/istqbsyll.pdf
http://www.ece.cmu.edu/~koopman/des_s99/verification/index.html
http://www.ece.cmu.edu/~koopman/des_s99/verification/index.html
http://www.bullseye.com/coverage.html#intro
http://www.mcs.le.ac.uk/people/gtl1/thesis.ps.gz
http://www.mcs.le.ac.uk/people/gtl1/thesis.ps.gz
https://en.wikipedia.org/wiki/James_Bach
http://www.satisfice.com/articles/requirements_based_testing.pdf
http://www.satisfice.com/articles/requirements_based_testing.pdf
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/978-0-615-23372-7

www.manaraa.com

28.	 van	Veenendaal,	Erik.	"Standard	glossary	of	terms	used	in	Software	Testing".	http://www.astqb.org/educational-resources/glossary.php#A
29.	 Globalization	Step-by-Step:	The	World-Ready	Approach	to	Testing.	Microsoft	Developer	Network	(http://msdn.microsoft.com/en-us/goglobal/bb688148)
30.	 e)Testing	Phase	in	Software	Testing:-	(http://www.etestinghub.com/testing_lifecycles.php#2)
31.	 Myers,	Glenford	J.	(1979).	The	Art	of	Software	Testing.	John	Wiley	and	Sons.	pp.	145–146.	ISBN	0-471-04328-1
32.	 Dustin,	Elfriede	(2002).	Effective	Software	Testing.	Addison	Wesley.	p.	3.	ISBN	0-20179-429-2.
33.	 Marchenko,	Artem	(November	16,	2007).	"XP	Practice:	Continuous	Integration".	http://agilesoftwaredevelopment.com/xp/practices/continuous-integration
34.	 Gurses,	Levent	(February	19,	2007).	"Agile	101:	What	is	Continuous	Integration?".	http://www.jacoozi.com/blog/?p=18
35.	 Pan,	Jiantao	(Spring	1999).	"Software	Testing	(18-849b	Dependable	Embedded	Systems)".	Topics	in	Dependable	Embedded	Systems

Carnegie	Mellon	University.	http://www.ece.cmu.edu/~koopman/des_s99/sw_testing/.
36.	 IEEE	(1998).	IEEE	standard	for	software	test	documentation.	New	York:	IEEE.	ISBN	0-7381-1443-X.
37.	 Kaner,	Cem	(2001).	"NSF	grant	proposal	to	"lay	a	foundation	for	significant	improvements	in	the	quality	of	academic	and	commercial	courses	in	software	testing""

http://www.testingeducation.org/general/nsf_grant.pdf.
38.	 Kaner,	Cem	(2003).	"Measuring	the	Effectiveness	of	Software	Testers"	(pdf).	http://www.testingeducation.org/a/mest.pdf
39.	 Black,	Rex	(December	2008).	Advanced	Software	Testing-	Vol.	2:	Guide	to	the	ISTQB	Advanced	Certification	as	an	Advanced	Test	Manager

ISBN	1933952369.
40.	 Quality	Assurance	Institute	(http://www.qaiglobalinstitute.com/)
41.	 International	Institute	for	Software	Testing	(http://www.testinginstitute.com/)
42.	 K.	J.	Ross	&	Associates	(http://www.kjross.com.au/cstp/)
43.	 "ISTQB".	http://www.istqb.org/.
44.	 "ISTQB	in	the	U.S.".	http://www.astqb.org/.
45.	 EXIN:	Examination	Institute	for	Information	Science	(http://www.exin-exams.com)
46.	 American	Society	for	Quality	(http://www.asq.org/)
47.	 context-driven-testing.com	(http://www.context-driven-testing.com)
48.	 Article	on	taking	agile	traits	without	the	agile	method.	(http://www.technicat.com/writing/process.html)
49.	 “We’re	all	part	of	the	story”	(http://stpcollaborative.com/knowledge/272-were-all-part-of-the-story)	by	David	Strom,	July	1,	2009
50.	 IEEE	article	about	differences	in	adoption	of	agile	trends	between	experienced	managers	vs.	young	students	of	the	Project	Management	Institute

n.jsp?url=/iel5/10705/33795/01609838.pdf?temp=x).	See	also	Agile	adoption	study	from	2007	(http://www.ambysoft.com/downloads/surveys/AgileAdoption2007.ppt)
51.	 Willison,	John	S.	(April	2004).	"Agile	Software	Development	for	an	Agile	Force".	CrossTalk	(STSC)	(April	2004).	Archived	from	

http://web.archive.org/web/20051029135922/http://www.stsc.hill.af.mil/crosstalk/2004/04/0404willison.html.
52.	 IEEE	article	on	Exploratory	vs.	Non	Exploratory	testing	(http://ieeexplore.ieee.org/iel5/10351/32923/01541817.pdf?arnumber=1541817)
53.	 An	example	is	Mark	Fewster,	Dorothy	Graham:	Software	Test	Automation.	Addison	Wesley,	1999,	ISBN	0-201-33140-3
54.	 Microsoft	Development	Network	Discussion	on	exactly	this	topic	(http://channel9.msdn.com/forums/Coffeehouse/402611-Are-you-a-Test-Driven-Developer/)

Software	testing	tools	and	products	(http://www.dmoz.org/Computers/Programming/Software_Testing/Products_and_Tools/)
"Software	that	makes	Software	better"	Economist.com	(http://www.economist.com/science/tq/displaystory.cfm?story_id=10789417)
Automated	software	testing	metrics	including	manual	testing	metrics	(http://www.innovativedefense.com/img/UsefulAutomatedTestingMetrics.pdf)

In	computer	programming,	unit	testing	is	a	method	by	which	individual	units	of	source	code	are	tested	to	determine	if	they	are	fit	for	use.	A	unit	is	the	smallest	testable	part	of	an
application.	In	procedural	programming	a	unit	may	be	an	individual	function	or	procedure.	Unit	tests	are	created	by	programmers	or	occasionally	by	white	box	testers.

Ideally,	each	test	case	is	independent	from	the	others:	substitutes	like	method	stubs,	mock	objects,[1]	fakes	and	test	harnesses	can	be	used	to	assist	testing	a	module	in	isolation.	Unit	tests
are	typically	written	and	run	by	software	developers	to	ensure	that	code	meets	its	design	and	behaves	as	intended.	Its	implementation	can	vary	from	being	very	manual	(pencil	and	paper)
to	being	formalized	as	part	of	build	automation.

The	goal	of	unit	testing	is	to	isolate	each	part	of	the	program	and	show	that	the	individual	parts	are	correct.[2]	A	unit	test	provides	a	strict,	written	contract	that	the	piece	of	code	must
satisfy.	As	a	result,	it	affords	several	benefits.	Unit	tests	find	problems	early	in	the	development	cycle.

Unit	testing	allows	the	programmer	to	refactor	code	at	a	later	date,	and	make	sure	the	module	still	works	correctly	(e.g.,	in	regression	testing).	The	procedure	is	to	write	test	cases	for	all
functions	and	methods	so	that	whenever	a	change	causes	a	fault,	it	can	be	quickly	identified	and	fixed.

External	links

Unit	Tests

Benefits

Facilitates	change

http://www.astqb.org/educational-resources/glossary.php#A
http://www.astqb.org/educational-resources/glossary.php#A
http://msdn.microsoft.com/en-us/goglobal/bb688148
http://www.etestinghub.com/testing_lifecycles.php#2
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-471-04328-1
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-20179-429-2
http://agilesoftwaredevelopment.com/xp/practices/continuous-integration
http://agilesoftwaredevelopment.com/xp/practices/continuous-integration
http://www.jacoozi.com/blog/?p=18
http://www.jacoozi.com/blog/?p=18
http://www.ece.cmu.edu/~koopman/des_s99/sw_testing/
http://www.ece.cmu.edu/~koopman/des_s99/sw_testing/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-7381-1443-X
http://www.testingeducation.org/general/nsf_grant.pdf
http://www.testingeducation.org/general/nsf_grant.pdf
http://www.testingeducation.org/a/mest.pdf
http://www.testingeducation.org/a/mest.pdf
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/1933952369
http://www.qaiglobalinstitute.com/
http://www.testinginstitute.com/
http://www.kjross.com.au/cstp/
http://www.istqb.org/
http://www.istqb.org/
http://www.astqb.org/
http://www.astqb.org/
http://www.exin-exams.com/
http://www.asq.org/
http://www.context-driven-testing.com/
http://www.technicat.com/writing/process.html
http://stpcollaborative.com/knowledge/272-were-all-part-of-the-story
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/10705/33795/01609838.pdf?temp=x
http://www.ambysoft.com/downloads/surveys/AgileAdoption2007.ppt
http://web.archive.org/web/20051029135922/http://www.stsc.hill.af.mil/crosstalk/2004/04/0404willison.html
http://web.archive.org/web/20051029135922/http://www.stsc.hill.af.mil/crosstalk/2004/04/0404willison.html
http://ieeexplore.ieee.org/iel5/10351/32923/01541817.pdf?arnumber=1541817
https://en.wikibooks.org/wiki/Special:BookSources/0-201-33140-3
http://channel9.msdn.com/forums/Coffeehouse/402611-Are-you-a-Test-Driven-Developer/
http://www.dmoz.org/Computers/Programming/Software_Testing/Products_and_Tools/
http://www.economist.com/science/tq/displaystory.cfm?story_id=10789417
http://www.innovativedefense.com/img/UsefulAutomatedTestingMetrics.pdf
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-mocksarentstubs-261
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-kolawa-262

www.manaraa.com

Readily-available	unit	tests	make	it	easy	for	the	programmer	to	check	whether	a	piece	of	code	is	still	working	properly.

In	continuous	unit	testing	environments,	through	the	inherent	practice	of	sustained	maintenance,	unit	tests	will	continue	to	accurately	reflect	the	intended	use	of	the	executable	and	code
in	the	face	of	any	change.	Depending	upon	established	development	practices	and	unit	test	coverage,	up-to-the-second	accuracy	can	be	maintained.	In	unit	testing	we	test	each	the	module
separately.

Unit	testing	may	reduce	uncertainty	in	the	units	themselves	and	can	be	used	in	a	bottom-up	testing	style	approach.	By	testing	the	parts	of	a	program	first	and	then	testing	the	sum	of	its
parts,	integration	testing	becomes	much	easier.

An	elaborate	hierarchy	of	unit	 tests	does	not	equal	 integration	testing.	 Integration	with	peripheral	units	 should	be	 included	 in	 integration	tests,	but	not	 in	unit	 tests.
Integration	testing	typically	still	relies	heavily	on	humans	testing	manually;	high-level	or	global-scope	testing	can	be	difficult	to	automate,	such	that	manual	testing	often	appears	faster
and	cheaper.[citation	needed]

Unit	testing	provides	a	sort	of	living	documentation	of	the	system.	Developers	looking	to	learn	what	functionality	is	provided	by	a	unit	and	how	to	use	it	can	look	at	the	unit	tests	to	gain
a	basic	understanding	of	the	unit's	API.

Unit	test	cases	embody	characteristics	that	are	critical	to	the	success	of	the	unit.	These	characteristics	can	indicate	appropriate/inappropriate	use	of	a	unit	as	well	as	negative	behaviors
that	are	to	be	trapped	by	the	unit.	A	unit	test	case,	in	and	of	itself,	documents	these	critical	characteristics,	although	many	software	development	environments	do	not	rely	solely	upon
code	to	document	the	product	in	development.

By	contrast,	ordinary	narrative	documentation	is	more	susceptible	to	drifting	from	the	implementation	of	the	program	and	will	thus	become	outdated	(e.g.,	design	changes,	feature	creep,
relaxed	practices	in	keeping	documents	up-to-date).

When	software	is	developed	using	a	test-driven	approach,	the	unit	test	may	take	the	place	of	formal	design.	Each	unit	test	can	be	seen	as	a	design	element	specifying	classes,	methods,	and
observable	behaviour.	The	following	Java	example	will	help	illustrate	this	point.

Here	 is	 a	 test	 class	 that	 specifies	 a	number	 of	 elements	 of	 the	 implementation.	First,	 that	 there	must	be	 an	 interface	 called	Adder,	 and	an	 implementing	 class	with	 a	 zero-argument
constructor	called	AdderImpl.	It	goes	on	to	assert	that	the	Adder	interface	should	have	a	method	called	add,	with	two	integer	parameters,	which	returns	another	integer.	It	also	specifies
the	behaviour	of	this	method	for	a	small	range	of	values.

public	class	TestAdder	{
				public	void	testSum()	{
								Adder	adder	=	new	AdderImpl();
								assert(adder.add(1,	1)	==	2);
								assert(adder.add(1,	2)	==	3);
								assert(adder.add(2,	2)	==	4);
								assert(adder.add(0,	0)	==	0);
								assert(adder.add(-1,	-2)	==	-3);
								assert(adder.add(-1,	1)	==	0);
								assert(adder.add(1234,	988)	==	2222);
				}
}

In	this	case	the	unit	test,	having	been	written	first,	acts	as	a	design	document	specifying	the	form	and	behaviour	of	a	desired	solution,	but	not	the	implementation	details,	which	are	left	for
the	programmer.	Following	the	"do	the	simplest	thing	that	could	possibly	work"	practice,	the	easiest	solution	that	will	make	the	test	pass	is	shown	below.

interface	Adder	{
				int	add(int	a,	int	b);
}
class	AdderImpl	implements	Adder	{
				int	add(int	a,	int	b)	{
								return	a	+	b;
				}
}

Unlike	 other	 diagram-based	 design	 methods,	 using	 a	 unit-test	 as	 a	 design	 has	 one	 significant	 advantage.	 The	 design	 document	 (the	 unit-test	 itself)	 can	 be	 used	 to	 verify	 that	 the
implementation	adheres	to	the	design.	With	the	unit-test	design	method,	the	tests	will	never	pass	if	the	developer	does	not	implement	the	solution	according	to	the	design.

It	is	true	that	unit	testing	lacks	some	of	the	accessibility	of	a	diagram,	but	UML	diagrams	are	now	easily	generated	for	most	modern	languages	by	free	tools	(usually	available	as	extensions
to	IDEs).	Free	tools,	like	those	based	on	the	xUnit	framework,	outsource	to	another	system	the	graphical	rendering	of	a	view	for	human	consumption.

Simplifies	integration

Documentation

Design

https://en.wikibooks.org/wiki/Wikibooks:OR

www.manaraa.com

Because	 some	 classes	may	have	 references	 to	 other	 classes,	 testing	 a	 class	 can	 frequently	 spill	 over	 into	 testing	 another	 class.	A	 common	 example	 of	 this	 is	 classes	 that	depend	on	a
database:	 in	order	to	test	the	class,	 the	tester	often	writes	code	that	 interacts	with	the	database.	This	 is	a	mistake,	because	a	unit	test	should	usually	not	go	outside	of	 its	own	class
boundary,	 and	 especially	 should	 not	 cross	 such	 process/network	 boundaries	 because	 this	 can	 introduce	 unacceptable	 performance	 problems	 to	 the	 unit	 test-suite.	 Crossing	 such	 unit
boundaries	turns	unit	tests	into	integration	tests,	and	when	test	cases	fail,	makes	it	less	clear	which	component	is	causing	the	failure.	See	also	Fakes,	mocks	and	integration	tests

Instead,	 the	 software	 developer	 should	 create	 an	 abstract	 interface	 around	 the	 database	 queries,	 and	 then	 implement	 that	 interface	with	 their	 own	mock	 object.	 By	 abstracting	 this
necessary	attachment	from	the	code	(temporarily	reducing	the	net	effective	coupling),	the	independent	unit	can	be	more	thoroughly	tested	than	may	have	been	previously	achieved.	This
results	in	a	higher	quality	unit	that	is	also	more	maintainable.

Testing	cannot	be	expected	to	catch	every	error	in	the	program:	it	is	impossible	to	evaluate	every	execution	path	in	all	but	the	most	trivial	programs.	The	same	is	true	for	unit	testing.
Additionally,	unit	testing	by	definition	only	tests	the	functionality	of	the	units	themselves.	Therefore,	it	will	not	catch	integration	errors	or	broader	system-level	errors	(such	as	functions
performed	across	multiple	units,	 or	non-functional	 test	areas	 such	as	performance).	Unit	 testing	 should	be	done	 in	 conjunction	with	other	 software	 testing	activities.	Like	all	 forms	of
software	testing,	unit	tests	can	only	show	the	presence	of	errors;	they	cannot	show	the	absence	of	errors.

Software	testing	is	a	combinatorial	problem.	For	example,	every	boolean	decision	statement	requires	at	least	two	tests:	one	with	an	outcome	of	"true"	and	one	with	an	outcome	of	"false".
As	a	result,	for	every	line	of	code	written,	programmers	often	need	3	to	5	lines	of	test	code.[3]	This	obviously	takes	time	and	its	investment	may	not	be	worth	the	effort.	There	are	also
many	problems	that	cannot	easily	be	tested	at	all	–	for	example	those	that	are	nondeterministic	or	involve	multiple	threads.	In	addition,	writing	code	for	a	unit	test	is	as	likely	to	be	at
least	as	buggy	as	the	code	it	is	testing.	Fred	Brooks	in	The	Mythical	Man-Month	quotes:	never	take	two	chronometers	to	sea.	Always	take	one	or	three.
contradict,	how	do	you	know	which	one	is	correct?

To	obtain	the	intended	benefits	from	unit	testing,	rigorous	discipline	is	needed	throughout	the	software	development	process.	It	is	essential	to	keep	careful	records	not	only	of	the	tests	that
have	been	performed,	but	also	of	all	changes	that	have	been	made	to	the	source	code	of	this	or	any	other	unit	in	the	software.	Use	of	a	version	control	system	is	essential.	If	a	later	version
of	the	unit	fails	a	particular	test	that	it	had	previously	passed,	the	version-control	software	can	provide	a	list	of	the	source	code	changes	(if	any)	that	have	been	applied	to	the	unit	since
that	time.

It	 is	 also	 essential	 to	 implement	 a	 sustainable	 process	 for	 ensuring	 that	 test	 case	 failures	 are	 reviewed	daily	 and	 addressed	 immediately.
ingrained	into	the	team's	workflow,	the	application	will	evolve	out	of	sync	with	the	unit	test	suite,	increasing	false	positives	and	reducing	the	effectiveness	of	the	test	suite.

Unit	testing	 is	the	cornerstone	of	Extreme	Programming,	which	relies	on	an	automated	unit	testing	framework.	This	automated	unit	testing	framework	can	be	either	third	party,	e.g.,
xUnit,	or	created	within	the	development	group.

Extreme	Programming	uses	the	creation	of	unit	tests	for	test-driven	development.	The	developer	writes	a	unit	test	that	exposes	either	a	software	requirement	or	a	defect.	This	test	will	fail
because	either	the	requirement	isn't	implemented	yet,	or	because	it	intentionally	exposes	a	defect	in	the	existing	code.	Then,	the	developer	writes	the	simplest	code	to	make	the	test,	along
with	other	tests,	pass.

Most	 code	 in	 a	 system	 is	 unit	 tested,	 but	 not	 necessarily	 all	 paths	 through	 the	 code.	Extreme	Programming	mandates	 a	 "test	 everything	 that	 can	possibly	 break"	 strategy,	 over	 the
traditional	"test	every	execution	path"	method.	This	leads	developers	to	develop	fewer	tests	than	classical	methods,	but	this	isn't	really	a	problem,	more	a	restatement	of	fact,	as	classical
methods	have	rarely	ever	been	followed	methodically	enough	for	all	execution	paths	to	have	been	thoroughly	tested.
is	rarely	exhaustive	(because	it	is	often	too	expensive	and	time-consuming	to	be	economically	viable)	and	provides	guidance	on	how	to	effectively	focus	limited	resources.

Crucially,	the	test	code	is	considered	a	first	class	project	artifact	in	that	it	is	maintained	at	the	same	quality	as	the	implementation	code,	with	all	duplication	removed.	Developers	release
unit	testing	code	to	the	code	repository	in	conjunction	with	the	code	it	tests.	Extreme	Programming's	thorough	unit	testing	allows	the	benefits	mentioned	above,	such	as	simpler	and	more
confident	code	development	and	refactoring,	simplified	code	integration,	accurate	documentation,	and	more	modular	designs.	These	unit	tests	are	also	constantly	run	as	a	form	of	regression
test.

Unit	testing	is	commonly	automated,	but	may	still	be	performed	manually.	The	IEEE	does	not	favor	one	over	the	other.
instructional	document.	Nevertheless,	the	objective	in	unit	testing	is	to	isolate	a	unit	and	validate	its	correctness.	Automation	is	efficient	for	achieving	this,	and	enables	the	many	benefits
listed	 in	 this	article.	Conversely,	 if	not	planned	carefully,	a	careless	manual	unit	 test	case	may	execute	as	an	 integration	 test	case	 that	 involves	many	software	components,	and	thus
preclude	the	achievement	of	most	if	not	all	of	the	goals	established	for	unit	testing.

To	fully	realize	the	effect	of	isolation	while	using	an	automated	approach,	the	unit	or	code	body	under	test	is	executed	within	a	framework	outside	of	its	natural	environment.	In	other
words,	it	is	executed	outside	of	the	product	or	calling	context	for	which	it	was	originally	created.	Testing	in	such	an	isolated	manner	reveals	unnecessary	dependencies	between	the	code
being	tested	and	other	units	or	data	spaces	in	the	product.	These	dependencies	can	then	be	eliminated.

Using	an	automation	framework,	the	developer	codes	criteria	into	the	test	to	verify	the	unit's	correctness.	During	test	case	execution,	the	framework	logs	tests	that	fail	any	criterion.	Many
frameworks	will	also	automatically	flag	these	failed	test	cases	and	report	them	in	a	summary.	Depending	upon	the	severity	of	a	failure,	the	framework	may	halt	subsequent	testing.

As	a	consequence,	unit	testing	is	traditionally	a	motivator	for	programmers	to	create	decoupled	and	cohesive	code	bodies.	This	practice	promotes	healthy	habits	in	software	development.
Design	patterns,	unit	testing,	and	refactoring	often	work	together	so	that	the	best	solution	may	emerge.

Unit	testing	frameworks	are	most	often	third-party	products	that	are	not	distributed	as	part	of	the	compiler	suite.	They	help	simplify	the	process	of	unit	testing,	having	been	developed	for
a	 wide	 variety	 of	 languages.	 Examples	 of	 testing	 frameworks	 include	 open	 source	 solutions	 such	 as	 the	 various	 code-driven	 testing	 frameworks	 known	 collectively	 as	 xUnit,	 and
proprietary/commercial	solutions	such	as	TBrun,	Testwell	CTA++	and	VectorCAST/C++.

It	is	generally	possible	to	perform	unit	testing	without	the	support	of	a	specific	framework	by	writing	client	code	that	exercises	the	units	under	test	and	uses	assertions,	exception	handling,
or	other	control	flow	mechanisms	to	signal	failure.	Unit	testing	without	a	framework	is	valuable	in	that	there	is	a	barrier	to	entry	for	the	adoption	of	unit	testing;	having	scant	unit	tests	is
hardly	better	than	having	none	at	all,	whereas	once	a	framework	is	in	place,	adding	unit	tests	becomes	relatively	easy.
or	must	be	hand-coded.

Some	programming	 languages	 support	 unit	 testing	 directly.	Their	 grammar	 allows	 the	 direct	 declaration	 of	 unit	 tests	without	 importing	 a	 library	 (whether	 third	 party	 or	 standard).

Separation	of	interface	from	implementation

Unit	testing	limitations

Applications

Extreme	Programming

Techniques

Unit	testing	frameworks

Language-level	unit	testing	support

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-263

www.manaraa.com

Some	programming	 languages	 support	 unit	 testing	 directly.	Their	 grammar	 allows	 the	 direct	 declaration	 of	 unit	 tests	without	 importing	 a	 library	 (whether	 third	 party	 or	 standard).
Additionally,	 the	 boolean	 conditions	 of	 the	 unit	 tests	 can	 be	 expressed	 in	 the	 same	 syntax	 as	 boolean	 expressions	 used	 in	 non-unit	 test	 code,	 such	 as	what	 is	 used	 for	
statements.

Languages	that	directly	support	unit	testing	include:

Cobra
D

1.	 Fowler,	Martin	(2007-01-02).	"Mocks	aren't	Stubs".	http://martinfowler.com/articles/mocksArentStubs.html.	Retrieved	2008-04-01
2.	 Kolawa,	Adam;	Huizinga,	Dorota	(2007).	Automated	Defect	Prevention:	Best	Practices	in	Software	Management
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html.

3.	 Cramblitt,	Bob	(2007-09-20).	"Alberto	Savoia	sings	the	praises	of	software	testing".	http://searchsoftwarequality.techtarget.com/originalContent/0,289142,sid92_gci1273161,00.html
Retrieved	2007-11-29.

4.	 daVeiga,	Nada	(2008-02-06).	"Change	Code	Without	Fear:	Utilize	a	regression	safety	net".	http://www.ddj.com/development-tools/206105233
5.	 IEEE	Standards	Board,	"IEEE	Standard	for	Software	Unit	Testing:	An	American	National	Standard,	ANSI/IEEE	Std	1008-1987"
EE%201008.pdf)	in	IEEE	Standards:	Software	Engineering,	Volume	Two:	Process	Standards;	1999	Edition;	published	by	The	Institute	of	Electrical	and	Electronics	Engineers,	Inc.
Software	Engineering	Technical	Committee	of	the	IEEE	Computer	Society.

6.	 Bullseye	Testing	Technology	(2006–2008).	"Intermediate	Coverage	Goals".	http://www.bullseye.com/coverage.html#intermediate

The	evolution	of	Unit	Testing	Syntax	and	Semantics	(http://weblogs.asp.net/rosherove/archive/2008/01/17/the-evolution-of-unit-testing-and-syntax.aspx)
Unit	Testing	Guidelines	from	GeoSoft	(http://geosoft.no/development/unittesting.html)
Test	Driven	Development	(Ward	Cunningham's	Wiki)	(http://c2.com/cgi/wiki?TestDrivenDevelopment)
Unit	Testing	101	for	the	Non-Programmer	(http://www.saravanansubramanian.com/Saravanan/Articles_On_Software/Entries/2010/1/19_Unit_Testing_101_For_Non-Programmer
s.html)
Step-by-Step	Guide	to	JPA-Enabled	Unit	Testing	(Java	EE)	(http://www.sizovpoint.com/2010/01/step-by-step-guide-to-jpa-enabled-unit.html)

In	software	engineering,	program	profiling,	software	profiling	or	simply	profiling,	a	form	of	dynamic	program	analysis	(as	opposed	to	static	code	analysis),	is	the	investigation	of
a	program's	behavior	using	 information	gathered	as	the	program	executes.	The	usual	purpose	of	this	analysis	 is	to	determine	which	sections	of	a	program	to	optimize	-	to	 increase	 its
overall	speed,	decrease	its	memory	requirement	or	sometimes	both.

A	(code)	profiler	is	a	performance	analysis	tool	that,	most	commonly,	measures	only	the	frequency	and	duration	of	function	calls,	but	there	are	other	specific	types	of	profilers
(e.g.	memory	profilers)	in	addition	to	more	comprehensive	profilers,	capable	of	gathering	extensive	performance	data.
An	instruction	set	simulator	which	is	also	—	by	necessity	—	a	profiler,	can	measure	the	totality	of	a	program's	behaviour	from	invocation	to	termination.

Profilers	 use	 a	 wide	 variety	 of	 techniques	 to	 collect	 data,	 including	 hardware	 interrupts,	 code	 instrumentation,	 instruction	 set	 simulation,	 operating	 system	 hooks,	 and	 performance
counters.	The	usage	of	profilers	is	'called	out'	in	the	performance	engineering	process.

Program	analysis	tools	are	extremely	important	for	understanding	program	behavior.	Computer	architects	need	such	tools	to	evaluate	how	well	programs	will	perform	on	new	architectures.
Software	writers	need	tools	to	analyze	their	programs	and	identify	critical	sections	of	code.	Compiler	writers	often	use	such	tools	to	find	out	how	well	their	instruction	scheduling	or	branch
prediction	algorithm	is	performing...	(ATOM,	PLDI,	'94)

The	output	of	a	profiler	may	be:-

A	statistical	summary	of	the	events	observed	(a	profile)

Summary	profile	information	is	often	shown	annotated	against	the	source	code	statements	where	the	events	occur,	so	the	size	of	measurement	data	is	linear	to	the	code	size	of	the
program.

/*	------------	source-------------------------	count	*/													
0001													IF	X	=	"A"																					0055
0002																THEN	DO																							
0003																		ADD	1	to	XCOUNT											0032
0004																ELSE

Notes

External	links

Profiling

Gathering	program	events

Use	of	profilers

https://en.wikipedia.org/wiki/Martin_Fowler
http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://searchsoftwarequality.techtarget.com/originalContent/0,289142,sid92_gci1273161,00.html
http://searchsoftwarequality.techtarget.com/originalContent/0,289142,sid92_gci1273161,00.html
http://www.ddj.com/development-tools/206105233
http://www.ddj.com/development-tools/206105233
http://iteso.mx/~pgutierrez/calidad/Estandares/IEEE%201008.pdf
http://www.bullseye.com/coverage.html#intermediate
http://www.bullseye.com/coverage.html#intermediate
http://weblogs.asp.net/rosherove/archive/2008/01/17/the-evolution-of-unit-testing-and-syntax.aspx
http://geosoft.no/development/unittesting.html
http://c2.com/cgi/wiki?TestDrivenDevelopment
http://www.saravanansubramanian.com/Saravanan/Articles_On_Software/Entries/2010/1/19_Unit_Testing_101_For_Non-Programmers.html
http://www.sizovpoint.com/2010/01/step-by-step-guide-to-jpa-enabled-unit.html

www.manaraa.com

0005													IF	X	=	"B"																					0055

A	stream	of	recorded	events	(a	trace)

For	sequential	programs,	a	summary	profile	is	usually	sufficient,	but	performance	problems	in	parallel	programs	(waiting	for	messages	or	synchronization	issues)	often	depend	on	the
time	relationship	of	events,	thus	requiring	a	full	trace	to	get	an	understanding	of	what	is	happening.
The	size	of	a	(full)	trace	is	linear	to	the	program's	instruction	path	length,	making	it	somewhat	impractical.	A	trace	may	therefore	be	initiated	at	one	point	in	a	program	and
terminated	at	another	point	to	limit	the	output.

An	ongoing	interaction	with	the	hypervisor	(continuous	or	periodic	monitoring	via	on-screen	display	for	instance)

This	provides	the	opportunity	to	switch	a	trace	on	or	off	at	any	desired	point	during	execution	in	addition	to	viewing	on-going	metrics	about	the	(still	executing)	program.	It	also
provides	the	opportunity	to	suspend	asynchronous	processes	at	critical	points	to	examine	interactions	with	other	parallel	processes	in	more	detail.

Performance	analysis	tools	existed	on	IBM/360	and	IBM/370	platforms	from	the	early	1970s,	usually	based	on	timer	interrupts	which	recorded	the	Program	status	word	(PSW)	at	set
timer	 intervals	 to	 detect	 "hot	 spots"	 in	 executing	 code.	This	was	 an	 early	 example	 of	 sampling	 (see	 below).	 In	 early	 1974,	 Instruction	 Set	 Simulators	 permitted	 full	 trace	 and	 other
performance	monitoring	features.

Profiler-driven	program	analysis	on	Unix	dates	back	to	at	least	1979,	when	Unix	systems	included	a	basic	tool	"prof"	that	listed	each	function	and	how	much	of	program	execution	time	it
used.	In	1982,	gprof	extended	the	concept	to	a	complete	call	graph	analysis	[1]

In	1994,	Amitabh	Srivastava	and	Alan	Eustace	of	Digital	Equipment	Corporation	published	a	paper	describing	ATOM.
profiler.	That	is,	at	compile	time,	it	inserts	code	into	the	program	to	be	analyzed.	That	inserted	code	outputs	analysis	data.	This	technique	-	modifying	a	program	to	analyze	itself	-	is
known	as	"instrumentation".

In	2004,	both	the	gprof	and	ATOM	papers	appeared	on	the	list	of	the	50	most	influential	PLDI	papers	of	all	time.[3]

Flat	profilers	compute	the	average	call	times,	from	the	calls,	and	do	not	break	down	the	call	times	based	on	the	callee	or	the	context.

Call	graph	profilers	show	the	call	times,	and	frequencies	of	the	functions,	and	also	the	call-chains	involved	based	on	the	callee.	However	context	is	not	preserved.

The	programming	languages	listed	here	have	event-based	profilers:

Java:	the	JVMTI	(JVM	Tools	Interface)	API,	formerly	JVMPI	(JVM	Profiling	Interface),	provides	hooks	to	profilers,	for	trapping	events	like	calls,	class-load,	unload,	thread	enter
leave.
.NET:	Can	attach	a	profiling	agent	as	a	COM	server	to	the	CLR.	Like	Java,	the	runtime	then	provides	various	callbacks	into	the	agent,	for	trapping	events	like	method	JIT	/	enter	/
leave,	object	creation,	etc.	Particularly	powerful	in	that	the	profiling	agent	can	rewrite	the	target	application's	bytecode	in	arbitrary	ways.
Python:	Python	profiling	includes	the	profile	module,	hotshot	(which	is	call-graph	based),	and	using	the	'sys.setprofile'	function	to	trap	events	like	c_{call,return,exception},
python_{call,return,exception}.
Ruby:	Ruby	also	uses	a	similar	interface	like	Python	for	profiling.	Flat-profiler	in	profile.rb,	module,	and	ruby-prof	a	C-extension	are	present.

Some	profilers	operate	by	sampling.	A	sampling	profiler	probes	the	target	program's	program	counter	at	regular	intervals	using	operating	system	interrupts.	Sampling	profiles	are	typically
less	numerically	accurate	and	specific,	but	allow	the	target	program	to	run	at	near	full	speed.

The	resulting	data	are	not	exact,	but	a	statistical	approximation.	The	actual	amount	of	error	is	usually	more	than	one	sampling	period.	In	fact,	if	a	value	is	n	times	the	sampling	period,
the	expected	error	in	it	is	the	square-root	of	n	sampling	periods.	[4]

In	practice,	sampling	profilers	can	often	provide	a	more	accurate	picture	of	the	target	program's	execution	than	other	approaches,	as	they	are	not	as	intrusive	to	the	target	program,	and
thus	don't	have	as	many	side	effects	(such	as	on	memory	caches	or	instruction	decoding	pipelines).	Also	since	they	don't	affect	the	execution	speed	as	much,	they	can	detect	issues	that
would	otherwise	be	hidden.	They	are	also	relatively	immune	to	over-evaluating	the	cost	of	small,	frequently	called	routines	or	'tight'	loops.	They	can	show	the	relative	amount	of	time
spent	in	user	mode	versus	interruptible	kernel	mode	such	as	system	call	processing.

Still,	kernel	code	to	handle	the	interrupts	entails	a	minor	loss	of	CPU	cycles,	diverted	cache	usage,	and	is	unable	to	distinguish	the	various	tasks	occurring	in	uninterruptible	kernel	code
(microsecond-range	activity).

History

Profiler	types	based	on	output

Flat	profiler

Call-graph	profiler

Methods	of	data	gathering

Event-based	profilers

Statistical	profilers

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-267
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-269
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-270

www.manaraa.com

Dedicated	hardware	can	go	beyond	this:	some	recent	MIPS	processors	JTAG	interface	have	a	PCSAMPLE	register,	which	samples	the	program	counter	in	a	truly	undetectable	manner.

Some	of	the	most	commonly	used	statistical	profilers	are	AMD	CodeAnalyst,	Apple	Inc.	Shark,	gprof,	Intel	VTune	and	Parallel	Amplifier	(part	of	Intel	Parallel	Studio).

Some	profilers	instrument	the	target	program	with	additional	instructions	to	collect	the	required	information.

Instrumenting	the	program	can	cause	changes	in	the	performance	of	the	program,	potentially	causing	inaccurate	results	and	heisenbugs.	Instrumenting	will	always	have	some	impact	on	the
program	execution,	typically	always	slowing	it.	However,	instrumentation	can	be	very	specific	and	be	carefully	controlled	to	have	a	minimal	impact.	The	impact	on	a	particular	program
depends	on	the	placement	of	instrumentation	points	and	the	mechanism	used	to	capture	the	trace.	Hardware	support	for	trace	capture	means	that	on	some	targets,	instrumentation	can	be
on	just	one	machine	instruction.	The	impact	of	instrumentation	can	often	be	deducted	(i.e.	eliminated	by	subtraction)	from	the	results.

gprof	is	an	example	of	a	profiler	that	uses	both	instrumentation	and	sampling.	Instrumentation	is	used	to	gather	caller	information	and	the	actual	timing	values	are	obtained	by	statistical
sampling.

Manual:	Performed	by	the	programmer,	e.g.	by	adding	instructions	to	explicitly	calculate	runtimes,	simply	count	events	or	calls	to	measurement	APIs	such	as	the	Application
Response	Measurement	standard.
Automatic	source	level:	instrumentation	added	to	the	source	code	by	an	automatic	tool	according	to	an	instrumentation	policy.
Compiler	assisted:	Example:	"gcc	-pg	..."	for	gprof,	"quantify	g++	..."	for	Quantify
Binary	translation:	The	tool	adds	instrumentation	to	a	compiled	binary.	Example:	ATOM
Runtime	instrumentation:	Directly	before	execution	the	code	is	instrumented.	The	program	run	is	fully	supervised	and	controlled	by	the	tool.	Examples:	Pin,	Valgrind
Runtime	injection:	More	lightweight	than	runtime	instrumentation.	Code	is	modified	at	runtime	to	have	jumps	to	helper	functions.	Example:	DynInst

Interpreter	debug	options	can	enable	the	collection	of	performance	metrics	as	the	interpreter	encounters	each	target	statement.	A	bytecode,	control	table	or	JIT	interpreters	are
three	examples	that	usually	have	complete	control	over	execution	of	the	target	code,	thus	enabling	extremely	comprehensive	data	collection	opportunities.

Hypervisor:	Data	are	collected	by	running	the	(usually)	unmodified	program	under	a	hypervisor.	Example:	SIMMON
Simulator	and	Hypervisor:	Data	collected	interactively	and	selectively	by	running	the	unmodified	program	under	an	Instruction	Set	Simulator.	Examples:	SIMON	(Batch
Interactive	test/debug)	and	IBM	OLIVER	(CICS	interactive	test/debug).

1.	 gprof:	a	Call	Graph	Execution	Profiler	(http://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf)
2.	 Atom:	A	system	for	building	customized	program	analysis	tools,	Amitabh	Srivastava	and	Alan	Eustace,	1994	(http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.8540)
(download	(http://www.ece.cmu.edu/~ece548/tools/atom/man/wrl_94_2.pdf))

3.	 20	Years	of	PLDI	(1979	-	1999):	A	Selection,	Kathryn	S.	McKinley,	Editor	(http://www.cs.utexas.edu/users/mckinley/20-years.html)
4.	 Statistical	Inaccuracy	of	gprof	Output	(http://lgl.epfl.ch/teaching/case_tools/doc/gprof/gprof_12.html)

Dunlavey,	“Performance	tuning	with	instruction-level	cost	derived	from	call-stack	sampling”,	ACM	SIGPLAN	Notices	42,	8	(August,	2007),	pp.	4–8.
Dunlavey,	“Performance	Tuning:	Slugging	It	Out!”,	Dr.	Dobb's	Journal,	Vol	18,	#12,	November	1993,	pp	18–26.

Article	"Need	for	speed	—	Eliminating	performance	bottlenecks	(http://www.ibm.com/developerworks/rational/library/05/1004_gupta/)
applications	using	IBM	Rational	Application	Developer.
Profiling	Runtime	Generated	and	Interpreted	Code	using	the	VTune™	Performance	Analyzer	(http://software.intel.com/sites/products/documentation/hpc/vtune/windows/jit_profili
ng.pdf)

Test-driven	development	(TDD)	is	a	software	development	process	that	relies	on	the	repetition	of	a	very	short	development	cycle:	first	the	developer	writes	a	failing	automated	test
case	that	defines	a	desired	improvement	or	new	function,	then	produces	code	to	pass	that	test	and	finally	refactors	the	new	code	to	acceptable	standards.	Kent	Beck,	who	is	credited	with
having	developed	or	'rediscovered'	the	technique,	stated	in	2003	that	TDD	encourages	simple	designs	and	inspires	confidence.

Test-driven	development	 is	 related	 to	 the	 test-first	 programming	 concepts	 of	 extreme	programming,	 begun	 in	 1999,
right.[3]

Programmers	also	apply	the	concept	to	improving	and	debugging	legacy	code	developed	with	older	techniques.[4]

Instrumenting	profilers

Instrumentation

Interpreter	instrumentation

Hypervisor/Simulator

References

External	links

Test-driven	Development

http://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.8540
http://www.ece.cmu.edu/~ece548/tools/atom/man/wrl_94_2.pdf
http://www.cs.utexas.edu/users/mckinley/20-years.html
http://lgl.epfl.ch/teaching/case_tools/doc/gprof/gprof_12.html
http://www.ibm.com/developerworks/rational/library/05/1004_gupta/
http://software.intel.com/sites/products/documentation/hpc/vtune/windows/jit_profiling.pdf
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Newkirk-273
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Feathers-274

www.manaraa.com

Test-driven	development	requires	developers	to	create	automated	unit	tests	that	define	code	requirements	(immediately)	before	writing	the	code	itself.	The	tests	contain	assertions	that	are
either	 true	 or	 false.	 Passing	 the	 tests	 confirms	 correct	 behavior	 as	 developers	 evolve	 and	 refactor	 the	 code.	 Developers	 often	 use	 testing	 frameworks,	 such	 as	 xUnit,	 to	 create	 and
automatically	run	sets	of	test	cases.

The	following	sequence	is	based	on	the	book	Test-Driven	Development	by	Example[1].

In	test-driven	development,	each	new	feature	begins	with	writing	a	test.	This	test	must	inevitably	fail	because	it	is	written	before	the	feature	has	been	implemented.	(If	it	does	not
fail,	then	either	the	proposed	“new”	feature	already	exists	or	the	test	is	defective.)	To	write	a	test,	the	developer	must	clearly	understand	the	feature's	specification	and	requirements.	The
developer	can	accomplish	this	through	use	cases	and	user	stories	that	cover	the	requirements	and	exception	conditions.	This	could	also	imply	a	variant,	or	modification	of	an	existing	test.
This	is	a	differentiating	feature	of	test-driven	development	versus	writing	unit	tests	after	the	code	is	written:	it	makes	the	developer	focus	on	the	requirements	
subtle	but	important	difference.

This	validates	that	the	test	harness	is	working	correctly	and	that	the	new	test	does	not	mistakenly	pass	without	requiring	any	new	code.	This	step	also	tests	the	test	itself,	in	the	negative:
it	rules	out	the	possibility	that	the	new	test	will	always	pass,	and	therefore	be	worthless.	The	new	test	should	also	fail	for	the	expected	reason.	This	increases	confidence	(although	it	does
not	entirely	guarantee)	that	it	is	testing	the	right	thing,	and	will	pass	only	in	intended	cases.

The	next	step	is	to	write	some	code	that	will	cause	the	test	to	pass.	The	new	code	written	at	this	stage	will	not	be	perfect	and	may,	for	example,	pass	the	test	in	an	inelegant	way.	That	is
acceptable	because	later	steps	will	improve	and	hone	it.

It	is	important	that	the	code	written	is	only	designed	to	pass	the	test;	no	further	(and	therefore	untested)	functionality	should	be	predicted	and	'allowed	for'	at	any	stage.

If	all	test	cases	now	pass,	the	programmer	can	be	confident	that	the	code	meets	all	the	tested	requirements.	This	is	a	good	point	from	which	to	begin	the	final	step	of	the	cycle.

Now	the	code	can	be	cleaned	up	as	necessary.	By	re-running	the	test	cases,	the	developer	can	be	confident	that	code	refactoring	is	not	damaging	any	existing	functionality.	The	concept	of
removing	duplication	is	an	important	aspect	of	any	software	design.	In	this	case,	however,	it	also	applies	to	removing	any	duplication	between	the	test	code	and	the	production	code	—	for
example	magic	numbers	or	strings	that	were	repeated	in	both,	in	order	to	make	the	test	pass	in	step	3.

Starting	with	another	new	test,	the	cycle	is	then	repeated	to	push	forward	the	functionality.	The	size	of	the	steps	should	always	be	small,	with	as	few	as	1	to	10	edits	between	each	test
run.	If	new	code	does	not	rapidly	satisfy	a	new	test,	or	other	tests	fail	unexpectedly,	the	programmer	should	undo	or	revert	in	preference	to	excessive	debugging.	Continuous	Integration
helps	by	providing	revertible	checkpoints.	When	using	external	libraries	it	is	important	not	to	make	increments	that	are	so	small	as	to	be	effectively	merely	testing	the	library	itself,
unless	there	is	some	reason	to	believe	that	the	library	is	buggy	or	is	not	sufficiently	feature-complete	to	serve	all	the	needs	of	the	main	program	being	written.

There	are	various	aspects	to	using	test-driven	development,	for	example	the	principles	of	"keep	it	simple,	stupid"	(KISS)	and	"You	ain't	gonna	need	it"	(YAGNI).	By	focusing	on	writing
only	the	code	necessary	to	pass	tests,	designs	can	be	cleaner	and	clearer	than	is	often	achieved	by	other	methods.[1]
principle	"Fake	it	till	you	make	it".

To	achieve	some	advanced	design	concept	(such	as	a	design	pattern),	tests	are	written	that	will	generate	that	design.	The	code	may	remain	simpler	than	the	target	pattern,	but	still	pass
all	required	tests.	This	can	be	unsettling	at	first	but	it	allows	the	developer	to	focus	only	on	what	is	important.

Write	the	tests	first.	The	tests	should	be	written	before	the	functionality	that	 is	being	tested.	This	has	been	claimed	to	have	two	benefits.	 It	helps	ensure	that	the	application	 is
written	for	testability,	as	the	developers	must	consider	how	to	test	the	application	from	the	outset,	rather	than	worrying	about	it	later.	It	also	ensures	that	tests	for	every	feature	will	be
written.	When	writing	feature-first	code,	there	is	a	tendency	by	developers	and	the	development	organisations	to	push	the	developer	onto	the	next	feature,	neglecting	testing	entirely.

First	fail	the	test	cases.	The	idea	is	to	ensure	that	the	test	really	works	and	can	catch	an	error.	Once	this	is	shown,	the	underlying	functionality	can	be	implemented.	This	has	been
coined	the	"test-driven	development	mantra",	known	as	red/green/refactor	where	red	means	fail	and	green	is	pass.

Test-driven	 development	 constantly	 repeats	 the	 steps	 of	 adding	 test	 cases	 that	 fail,	 passing	 them,	 and	 refactoring.	 Receiving	 the	 expected	 test	 results	 at	 each	 stage	 reinforces	 the
programmer's	mental	model	of	the	code,	boosts	confidence	and	increases	productivity.

Advanced	practices	of	test-driven	development	can	lead	to	Acceptance	Test-driven	development	(ATDD)	where	the	criteria	specified	by	the	customer	are	automated	into	acceptance	tests,
which	then	drive	the	traditional	unit	test-driven	development	(UTDD)	process.[5]	This	process	ensures	the	customer	has	an	automated	mechanism	to	decide	whether	the	software	meets
their	requirements.	With	ATDD,	the	development	team	now	has	a	specific	target	to	satisfy,	 the	acceptance	tests,	which	keeps	them	continuously	 focused	on	what	the	customer	really
wants	from	that	user	story.

A	2005	study	found	that	using	TDD	meant	writing	more	tests	and,	in	turn,	programmers	that	wrote	more	tests	tended	to	be	more	productive.
more	direct	correlation	between	TDD	and	productivity	were	inconclusive.[7]

Programmers	using	pure	TDD	on	new	("greenfield")	projects	report	they	only	rarely	feel	the	need	to	invoke	a	debugger.	Used	in	conjunction	with	a	version	control	system,	when	tests	fail
unexpectedly,	reverting	the	code	to	the	last	version	that	passed	all	tests	may	often	be	more	productive	than	debugging.

Test-driven	development	offers	more	than	just	simple	validation	of	correctness,	but	can	also	drive	the	design	of	a	program.	By	focusing	on	the	test	cases	first,	one	must	imagine	how	the
functionality	will	be	used	by	clients	(in	the	first	case,	the	test	cases).	So,	the	programmer	is	concerned	with	the	 interface	before	the	 implementation.	This	benefit	 is	complementary	to
Design	by	Contract	as	it	approaches	code	through	test	cases	rather	than	through	mathematical	assertions	or	preconceptions.

Requirements

Test-driven	development	cycle

Add	a	test

Run	all	tests	and	see	if	the	new	one	fails

Write	some	code

Run	the	automated	tests	and	see	them	succeed

Refactor	code

Repeat

Development	style

Benefits

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Beck-271
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Beck-271
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Koskela-275
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-277

www.manaraa.com

Test-driven	development	offers	the	ability	to	take	small	steps	when	required.	It	allows	a	programmer	to	focus	on	the	task	at	hand	as	the	first	goal	is	to	make	the	test	pass.	Exceptional
cases	and	error	handling	are	not	considered	initially,	and	tests	to	create	these	extraneous	circumstances	are	implemented	separately.	Test-driven	development	ensures	in	this	way	that	all
written	code	is	covered	by	at	least	one	test.	This	gives	the	programming	team,	and	subsequent	users,	a	greater	level	of	confidence	in	the	code.

While	it	is	true	that	more	code	is	required	with	TDD	than	without	TDD	because	of	the	unit	test	code,	total	code	implementation	time	is	typically	shorter.
to	limit	the	number	of	defects	in	the	code.	The	early	and	frequent	nature	of	the	testing	helps	to	catch	defects	early	in	the	development	cycle,	preventing	them	from	becoming	endemic	and
expensive	problems.	Eliminating	defects	early	in	the	process	usually	avoids	lengthy	and	tedious	debugging	later	in	the	project.

TDD	can	lead	to	more	modularized,	flexible,	and	extensible	code.	This	effect	often	comes	about	because	the	methodology	requires	that	the	developers	think	of	the	software	in	terms	of
small	units	that	can	be	written	and	tested	independently	and	integrated	together	later.	This	leads	to	smaller,	more	focused	classes,	looser	coupling,	and	cleaner	interfaces.	The	use	of	the
mock	object	design	pattern	also	contributes	to	the	overall	modularization	of	the	code	because	this	pattern	requires	that	the	code	be	written	so	that	modules	can	be	switched	easily	between
mock	versions	for	unit	testing	and	"real"	versions	for	deployment.

Because	no	more	code	is	written	than	necessary	to	pass	a	failing	test	case,	automated	tests	tend	to	cover	every	code	path.	For	example,	in	order	for	a	TDD	developer	to	add	an	
to	an	existing	if	statement,	the	developer	would	first	have	to	write	a	failing	test	case	that	motivates	the	branch.	As	a	result,	the	automated	tests	resulting	from	TDD	tend	to	be	very
thorough:	they	will	detect	any	unexpected	changes	in	the	code's	behaviour.	This	detects	problems	that	can	arise	where	a	change	later	in	the	development	cycle	unexpectedly	alters	other
functionality.

Test-driven	development	is	difficult	to	use	in	situations	where	full	functional	tests	are	required	to	determine	success	or	failure.	Examples	of	these	are	user	interfaces,	programs	that
work	with	databases,	and	some	that	depend	on	specific	network	configurations.	TDD	encourages	developers	to	put	the	minimum	amount	of	code	into	such	modules	and	to	maximise
the	logic	that	is	in	testable	library	code,	using	fakes	and	mocks	to	represent	the	outside	world.
Management	support	is	essential.	Without	the	entire	organization	believing	that	test-driven	development	is	going	to	improve	the	product,	management	may	feel	that	time	spent	writing
tests	is	wasted.[10]

Unit	tests	created	in	a	test-driven	development	environment	are	typically	created	by	the	developer	who	will	also	write	the	code	that	is	being	tested.	The	tests	may	therefore	share	the
same	blind	spots	with	the	code:	If,	for	example,	a	developer	does	not	realize	that	certain	input	parameters	must	be	checked,	most	likely	neither	the	test	nor	the	code	will	verify	these
input	parameters.	If	the	developer	misinterprets	the	requirements	specification	for	the	module	being	developed,	both	the	tests	and	the	code	will	be	wrong.
The	high	number	of	passing	unit	tests	may	bring	a	false	sense	of	security,	resulting	in	fewer	additional	software	testing	activities,	such	as	integration	testing	and	compliance	testing.
The	tests	themselves	become	part	of	the	maintenance	overhead	of	a	project.	Badly	written	tests,	for	example	ones	that	include	hard-coded	error	strings	or	which	are	themselves	prone
to	failure,	are	expensive	to	maintain.	There	is	a	risk	that	tests	that	regularly	generate	false	failures	will	be	ignored,	so	that	when	a	real	failure	occurs	it	may	not	be	detected.	It	is
possible	to	write	tests	for	low	and	easy	maintenance,	for	example	by	the	reuse	of	error	strings,	and	this	should	be	a	goal	during	the	code	refactoring	phase	described	above.
The	level	of	coverage	and	testing	detail	achieved	during	repeated	TDD	cycles	cannot	easily	be	re-created	at	a	later	date.	Therefore	these	original	tests	become	increasingly	precious	as
time	goes	by.	If	a	poor	architecture,	a	poor	design	or	a	poor	testing	strategy	leads	to	a	late	change	that	makes	dozens	of	existing	tests	fail,	it	is	important	that	they	are	individually
fixed.	Merely	deleting,	disabling	or	rashly	altering	them	can	lead	to	undetectable	holes	in	the	test	coverage.

Test	suite	code	clearly	has	to	be	able	to	access	the	code	it	is	testing.	On	the	other	hand	normal	design	criteria	such	as	information	hiding,	encapsulation	and	the	separation	of	concerns
should	not	be	compromised.	Therefore	unit	test	code	for	TDD	is	usually	written	within	the	same	project	or	module	as	the	code	being	tested.

In	object	oriented	design	this	still	does	not	provide	access	to	private	data	and	methods.	Therefore,	extra	work	may	be	necessary	for	unit	tests.	In	Java	and	other	languages,	a	developer	can
use	reflection	to	access	fields	that	are	marked	private.[11]	Alternatively,	an	inner	class	can	be	used	to	hold	the	unit	tests	so	they	will	have	visibility	of	the	enclosing	class's	members	and
attributes.	In	the	.NET	Framework	and	some	other	programming	languages,	partial	classes	may	be	used	to	expose	private	methods	and	data	for	the	tests	to	access.

It	 is	 important	that	such	testing	hacks	do	not	remain	in	the	production	code.	In	C	and	other	languages,	compiler	directives	such	as	
additional	classes	and	indeed	all	other	test-related	code	to	prevent	them	being	compiled	into	the	released	code.	This	then	means	that	the	released	code	is	not	exactly	the	same	as	that
which	is	unit	tested.	The	regular	running	of	fewer	but	more	comprehensive,	end-to-end,	integration	tests	on	the	final	release	build	can	then	ensure	(among	other	things)	that	no	production
code	exists	that	subtly	relies	on	aspects	of	the	test	harness.

There	is	some	debate	among	practitioners	of	TDD,	documented	in	their	blogs	and	other	writings,	as	to	whether	it	is	wise	to	test	private	and	protected	methods	and	data	anyway.	Some
argue	that	it	should	be	sufficient	to	test	any	class	through	its	public	interface	as	the	private	members	are	a	mere	implementation	detail	that	may	change,	and	should	be	allowed	to	do	so
without	breaking	numbers	of	tests.	Others	say	that	crucial	aspects	of	functionality	may	be	implemented	in	private	methods,	and	that	developing	this	while	testing	it	indirectly	via	the
public	interface	only	obscures	the	issue:	unit	testing	is	about	testing	the	smallest	unit	of	functionality	possible.[12][13]

Unit	tests	are	so	named	because	they	each	test	one	unit	of	code.	A	complex	module	may	have	a	thousand	unit	tests	and	a	simple	one	only	ten.	The	tests	used	for	TDD	should	never	cross
process	boundaries	in	a	program,	let	alone	network	connections.	Doing	so	introduces	delays	that	make	tests	run	slowly	and	discourage	developers	from	running	the	whole	suite.	Introducing
dependencies	on	external	modules	or	data	also	turns	unit	tests	into	integration	tests.	If	one	module	misbehaves	in	a	chain	of	interrelated	modules,	it	is	not	so	immediately	clear	where	to
look	for	the	cause	of	the	failure.

When	code	under	development	relies	on	a	database,	a	web	service,	or	any	other	external	process	or	service,	enforcing	a	unit-testable	separation	is	also	an	opportunity	and	a	driving	force	to
design	more	modular,	more	testable	and	more	reusable	code.[14]	Two	steps	are	necessary:

1.	 Whenever	external	access	is	going	to	be	needed	in	the	final	design,	an	interface	should	be	defined	that	describes	the	access	that	will	be	available.	See	the	dependency	inversion	principle
for	a	discussion	of	the	benefits	of	doing	this	regardless	of	TDD.

2.	 The	interface	should	be	implemented	in	two	ways,	one	of	which	really	accesses	the	external	process,	and	the	other	of	which	is	a	fake	or	mock.	Fake	objects	need	do	little	more	than	add
a	message	such	as	“Person	object	saved”	to	a	trace	log,	against	which	a	test	assertion	can	be	run	to	verify	correct	behaviour.	Mock	objects	differ	in	that	they	themselves	contain	test
assertions	that	can	make	the	test	fail,	for	example,	if	the	person's	name	and	other	data	are	not	as	expected.	Fake	and	mock	object	methods	that	return	data,	ostensibly	from	a	data

Vulnerabilities

Code	Visibility

Fakes,	mocks	and	integration	tests

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-280
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-281
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-282
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-283
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-284

www.manaraa.com

store	or	user,	can	help	the	test	process	by	always	returning	the	same,	realistic	data	that	tests	can	rely	upon.	They	can	also	be	set	into	predefined	fault	modes	so	that	error-handling
routines	can	be	developed	and	reliably	tested.	Fake	services	other	than	data	stores	may	also	be	useful	in	TDD:	Fake	encryption	services	may	not,	in	fact,	encrypt	the	data	passed;	fake
random	number	services	may	always	return	1.	Fake	or	mock	implementations	are	examples	of	dependency	injection.

A	corollary	of	such	dependency	injection	is	that	the	actual	database	or	other	external-access	code	is	never	tested	by	the	TDD	process	itself.	To	avoid	errors	that	may	arise	from	this,	other
tests	are	needed	that	instantiate	the	test-driven	code	with	the	“real”	implementations	of	the	interfaces	discussed	above.	These	tests	are	quite	separate	from	the	TDD	unit	tests,	and	are
really	integration	tests.	There	will	be	fewer	of	them,	and	they	need	to	be	run	less	often	than	the	unit	tests.	They	can	nonetheless	be	implemented	using	the	same	testing	framework,	such	as
xUnit.

Integration	tests	that	alter	any	persistent	store	or	database	should	always	be	designed	carefully	with	consideration	of	the	initial	and	final	state	of	the	files	or	database,	even	if	any	test	fails.
This	is	often	achieved	using	some	combination	of	the	following	techniques:

The	TearDown	method,	which	is	integral	to	many	test	frameworks.
try...catch...finally	exception	handling	structures	where	available.
Database	transactions	where	a	transaction	atomically	includes	perhaps	a	write,	a	read	and	a	matching	delete	operation.
Taking	a	“snapshot”	of	the	database	before	running	any	tests	and	rolling	back	to	the	snapshot	after	each	test	run.	This	may	be	automated	using	a	framework	such	as	Ant	or	NAnt	or	a
continuous	integration	system	such	as	CruiseControl.
Initialising	the	database	to	a	clean	state	before	tests,	rather	than	cleaning	up	after	them.	This	may	be	relevant	where	cleaning	up	may	make	it	difficult	to	diagnose	test	failures	by
deleting	the	final	state	of	the	database	before	detailed	diagnosis	can	be	performed.

Frameworks	 such	as	Moq,	 jMock,	NMock,	EasyMock,	Typemock,	 jMockit,	Unitils,	Mockito,	Mockachino,	PowerMock	or	Rhino	Mocks	exist	 to	make	the	process	of	 creating	and	using
complex	mock	objects	easier.

1.	 Beck,	K.	Test-Driven	Development	by	Example,	Addison	Wesley,	2003
2.	 Lee	Copeland	(December	2001).	"Extreme	Programming".	Computerworld.	http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,66192,00.html
January	11,	2011.

3.	 Newkirk,	JW	and	Vorontsov,	AA.	Test-Driven	Development	in	Microsoft	.NET,	Microsoft	Press,	2004.
4.	 Feathers,	M.	Working	Effectively	with	Legacy	Code,	Prentice	Hall,	2004
5.	 Koskela,	L.	"Test	Driven:	TDD	and	Acceptance	TDD	for	Java	Developers",	Manning	Publications,	2007
6.	 Erdogmus,	Hakan;	Morisio,	Torchiano.	"On	the	Effectiveness	of	Test-first	Approach	to	Programming".	Proceedings	of	the	IEEE	Transactions	on	Software	Engineering,	31(1).	January
2005.	(NRC	47445).	http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-47445_e.html.	Retrieved	2008-01-14.	"We	found	that	test-first	students	on	average	wrote	more	tests	and,	in	turn,
students	who	wrote	more	tests	tended	to	be	more	productive."

7.	 Proffitt,	Jacob.	"TDD	Proven	Effective!	Or	is	it?".	http://theruntime.com/blogs/jacob/archive/2008/01/22/tdd-proven-effective-or-is-it.aspx
relationship	to	quality	is	problematic	at	best.	Its	relationship	to	productivity	is	more	interesting.	I	hope	there's	a	follow-up	study	because	the	productivity	numbers	simply	don't	add	up
very	well	to	me.	There	is	an	undeniable	correlation	between	productivity	and	the	number	of	tests,	but	that	correlation	is	actually	stronger	in	the	non-TDD	group	(which	had	a	single
outlier	compared	to	roughly	half	of	the	TDD	group	being	outside	the	95%	band)."

8.	 Llopis,	Noel	(20	February	2005).	"Stepping	Through	the	Looking	Glass:	Test-Driven	Game	Development	(Part	1)"
http://www.gamesfromwithin.com/articles/0502/000073.html.	Retrieved	2007-11-01.	"Comparing	[TDD]	to	the	non-test-driven	development	approach,	you're	replacing	all	the	mental
checking	and	debugger	stepping	with	code	that	verifies	that	your	program	does	exactly	what	you	intended	it	to	do."

9.	 Müller,	Matthias	M.;	Padberg,	Frank.	"About	the	Return	on	Investment	of	Test-Driven	Development"	(PDF).	Universität	Karlsruhe,	Germany.	pp.	6
http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf.	Retrieved	2007-11-01.

10.	 Loughran,	Steve	(November	6th,	2006).	"Testing"	(PDF).	HP	Laboratories.	http://people.apache.org/~stevel/slides/testing.pdf
11.	 Burton,	Ross	(11/12/2003).	"Subverting	Java	Access	Protection	for	Unit	Testing".	O'Reilly	Media,	Inc..	http://www.onjava.com/pub/a/onjava/2003/11/12/reflection.html

2009-08-12.
12.	 Newkirk,	James	(7	June	2004).	"Testing	Private	Methods/Member	Variables	-	Should	you	or	shouldn't	you".	Microsoft	Corporation

http://blogs.msdn.com/jamesnewkirk/archive/2004/06/07/150361.aspx.	Retrieved	2009-08-12.
13.	 Stall,	Tim	(1	Mar	2005).	"How	to	Test	Private	and	Protected	methods	in	.NET".	CodeProject.	http://www.codeproject.com/KB/cs/testnonpublicmembers.aspx
14.	 Fowler,	Martin	(1999).	Refactoring	-	Improving	the	design	of	existing	code.	Boston:	Addison	Wesley	Longman,	Inc..	

[10]	(http://c2.com/cgi/wiki?TestDrivenDevelopment%7CTestDrivenDevelopment)	on	WikiWikiWeb
Test	or	spec?	Test	and	spec?	Test	from	spec!	(http://www.eiffel.com/general/monthly_column/2004/september.html)
Microsoft	Visual	Studio	Team	Test	from	a	TDD	approach	(http://msdn.microsoft.com/en-us/library/ms379625(VS.80).aspx)
Write	Maintainable	Unit	Tests	That	Will	Save	You	Time	And	Tears	(http://msdn.microsoft.com/en-us/magazine/cc163665.aspx)
Improving	Application	Quality	Using	Test-Driven	Development	(TDD)	(http://www.methodsandtools.com/archive/archive.php?id=20)

References

External	links

http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,66192,00.html
http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,66192,00.html
http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-47445_e.html
http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-47445_e.html
http://theruntime.com/blogs/jacob/archive/2008/01/22/tdd-proven-effective-or-is-it.aspx
http://theruntime.com/blogs/jacob/archive/2008/01/22/tdd-proven-effective-or-is-it.aspx
http://www.gamesfromwithin.com/articles/0502/000073.html
http://www.gamesfromwithin.com/articles/0502/000073.html
http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf
http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf
http://people.apache.org/~stevel/slides/testing.pdf
http://people.apache.org/~stevel/slides/testing.pdf
http://www.onjava.com/pub/a/onjava/2003/11/12/reflection.html
http://www.onjava.com/pub/a/onjava/2003/11/12/reflection.html
http://blogs.msdn.com/jamesnewkirk/archive/2004/06/07/150361.aspx
http://blogs.msdn.com/jamesnewkirk/archive/2004/06/07/150361.aspx
http://www.codeproject.com/KB/cs/testnonpublicmembers.aspx
http://www.codeproject.com/KB/cs/testnonpublicmembers.aspx
http://c2.com/cgi/wiki?TestDrivenDevelopment%7CTestDrivenDevelopment
http://www.eiffel.com/general/monthly_column/2004/september.html
http://msdn.microsoft.com/en-us/library/ms379625(VS.80).aspx
http://msdn.microsoft.com/en-us/magazine/cc163665.aspx
http://www.methodsandtools.com/archive/archive.php?id=20

www.manaraa.com

Code	refactoring	is	"a	disciplined	way	to	restructure	code",[1]	undertaken	in	order	to	improve	some	of	the	nonfunctional
series	of	"refactorings",	each	of	which	is	a	(usually)	tiny	change	in	a	computer	program's	source	code	that	does	not	modify	its	
readability	and	reduced	complexity	to	improve	the	maintainability	of	the	source	code,	as	well	as	a	more	expressive	internal	architecture	or	object	model	to	improve	extensibility.

“ By	continuously	improving	the	design	of	code,	we	make	it	easier	and	easier	to	work	with.	This	is	in	sharp	contrast	to	what	typically	happens:	little	refactoring	and	a	great	deal	of
attention	paid	to	expediently	adding	new	features.	If	you	get	into	the	hygienic	habit	of	refactoring	continuously,	you'll	find	that	it	is	easier	to	extend	and	maintain	code.

Refactoring	does	not	take	place	in	a	vacuum,	but	typically	the	refactoring	process	takes	place	in	a	context	of	adding	features	to	software:

"...	refactoring	and	adding	new	functionality	are	two	different	but	complementary	tasks"	--	Scott	Ambler

Refactoring	is	usually	motivated	by	noticing	a	code	smell.[3]	For	example	the	method	at	hand	may	be	very	long,	or	it	may	be	a	near	duplicate	of	another	nearby	method.	Once	recognized,
such	problems	can	be	addressed	by	refactoring	the	source	code,	or	transforming	it	into	a	new	form	that	behaves	the	same	as	before	but	that	no	longer	"smells".	For	a	long	routine,	extract
one	or	more	smaller	subroutines.	Or	for	duplicate	routines,	remove	the	duplication	and	utilize	one	shared	function	in	their	place.	Failure	to	perform	refactoring	can	result	in	accumulating
technical	debt.

There	are	two	general	categories	of	benefits	to	the	activity	of	refactoring.

1.	 Maintainability.	It	is	easier	to	fix	bugs	because	the	source	code	is	easy	to	read	and	the	intent	of	its	author	is	easy	to	grasp.
routines	into	a	set	of	individually	concise,	well-named,	single-purpose	methods.	It	might	be	achieved	by	moving	a	method	to	a	more	appropriate	class,	or	by	removing	misleading
comments.

2.	 Extensibility.	It	is	easier	to	extend	the	capabilities	of	the	application	if	it	uses	recognizable	design	patterns,	and	it	provides	some	flexibility	where	none	before	may	have	existed.

Before	refactoring	a	section	of	code,	a	solid	set	of	automatic	unit	tests	is	needed.	The	tests	should	demonstrate	in	a	few	seconds
The	process	is	then	an	iterative	cycle	of	making	a	small	program	transformation,	testing	it	to	ensure	correctness,	and	making	another	small	transformation.	If	at	any	point	a	test	fails,	you
undo	your	 last	 small	 change	 and	 try	 again	 in	 a	different	way.	Through	many	 small	 steps	 the	program	moves	 from	where	 it	was	 to	where	you	want	 it	 to	be.	Proponents	 of	 extreme
programming	and	other	agile	methodologies	describe	this	activity	as	an	integral	part	of	the	software	development	cycle.

Here	are	some	examples	of	code	refactorings;	 some	of	these	may	only	apply	to	certain	 languages	or	 language	types.	A	 longer	 list	can	be	 found	 in	Fowler's	Refactoring	book
Fowler's	Refactoring	Website.[5]

Techniques	that	allow	for	more	abstraction

Encapsulate	Field	–	force	code	to	access	the	field	with	getter	and	setter	methods
Generalize	Type	–	create	more	general	types	to	allow	for	more	code	sharing
Replace	type-checking	code	with	State/Strategy[6]

Replace	conditional	with	polymorphism[7]

Techniques	for	breaking	code	apart	into	more	logical	pieces

Extract	Method,	to	turn	part	of	a	larger	method	into	a	new	method.	By	breaking	down	code	in	smaller	pieces,	it	is	more	easily	understandable.	This	is	also	applicable	to	functions.
Extract	Class	moves	part	of	the	code	from	an	existing	class	into	a	new	class.

Techniques	for	improving	names	and	location	of	code

Move	Method	or	Move	Field	–	move	to	a	more	appropriate	Class	or	source	file
Rename	Method	or	Rename	Field	–	changing	the	name	into	a	new	one	that	better	reveals	its	purpose
Pull	Up	–	in	OOP,	move	to	a	superclass
Push	Down	–	in	OOP,	move	to	a	subclass

While	the	term	refactoring	originally	referred	exclusively	to	refactoring	of	software	code,	in	recent	years	code	written	in	hardware	description	languages	(HDLs)	has	also	been	refactored.
The	term	hardware	refactoring	is	used	as	a	shorthand	term	for	refactoring	of	code	in	hardware	description	languages.	Since	HDLs	are	not	considered	to	be	programming	languages	by	most
hardware	engineers,[8]	hardware	refactoring	is	to	be	considered	a	separate	field	from	traditional	code	refactoring.

Automated	 refactoring	of	 analog	hardware	descriptions	 (in	VHDL-AMS)	has	been	proposed	by	Zeng	and	Huss.[9]
hardware	design.	The	non-functional	measurement	that	improves	is	that	refactored	code	can	be	processed	by	standard	synthesis	tools,	while	the	original	code	cannot.	Refactoring	of	digital
HDLs,	albeit	manual	 refactoring,	has	also	been	 investigated	by	Synopsys	 fellow	Mike	Keating.[10][11]	His	target	 is	 to	make	complex	systems	easier	 to	understand,	which	 increases	the
designers'	productivity.

In	the	summer	of	2008,	there	was	an	intense	discussion	about	refactoring	of	VHDL	code	on	the	news://comp.lang.vhdl

Refactoring

Overview

List	of	refactoring	techniques

Hardware	refactoring

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-285
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-fowler-287
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-289
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-290
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-291
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-292
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-293
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-294
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-295
news://comp.lang.vhdl

www.manaraa.com

In	the	summer	of	2008,	there	was	an	intense	discussion	about	refactoring	of	VHDL	code	on	the	news://comp.lang.vhdl
refactoring	performed	by	one	engineer,	and	the	question	to	whether	or	not	automated	tools	for	such	refactoring	exist.

As	of	late	2009,	Sigasi	is	offering	automated	tool	support	for	VHDL	refactoring.[13]

In	the	past	refactoring	was	avoided	in	development	processes.	One	example	of	this	is	that	CVS	(created	in	1984)	does	not	version	the	moving	or	renaming	of	files	and	directories.

Although	refactoring	code	has	been	done	informally	for	years,	William	Opdyke's	1992	Ph.D.	dissertation[14]	is	the	first	known	paper	to	specifically	examine	refactoring,
theory	and	machinery	have	long	been	available	as	program	transformation	systems.	All	of	these	resources	provide	a	catalog	of	common	methods	for	refactoring;	a	refactoring	method	has	a
description	of	how	to	apply	the	method	and	indicators	for	when	you	should	(or	should	not)	apply	the	method.

Martin	Fowler's	book	Refactoring:	Improving	the	Design	of	Existing	Code[3]	is	the	canonical	reference.

The	first	known	use	of	the	term	"refactoring"	in	the	published	literature	was	in	a	September,	1990	article	by	William	F.	Opdyke	and	Ralph	E.	Johnson.
published	in	1992,	also	used	this	term.[15]

The	term	"factoring"	has	been	used	in	the	Forth	community	since	at	least	the	early	1980s[citation	needed].	Chapter	Six	of	Leo	Brodie's	book	
subject.

In	extreme	programming,	the	Extract	Method	refactoring	technique	has	essentially	the	same	meaning	as	factoring	in	Forth;	to	break	down	a	"word"	(or	function)	into	smaller,	more	easily
maintained	functions.

Many	software	editors	and	IDEs	have	automated	refactoring	support.	Here	is	a	list	of	a	few	of	these	editors,	or	so-called	refactoring	browsers.

IntelliJ	IDEA	(for	Java)
Eclipse's	Java	Development	Toolkit	(JDT)
NetBeans	(for	Java)

and	RefactoringNG	(http://kenai.com/projects/refactoringng/),	a	Netbeans	module	for	refactoring	where	you	can	write	transformations	rules	of	the	program's	abstract	syntax	tree.
Embarcadero	Delphi
Visual	Studio	(for	.NET)
JustCode	(addon	for	Visual	Studio)
ReSharper	(addon	for	Visual	Studio)
Coderush	(addon	for	Visual	Studio)
Visual	Assist	(addon	for	Visual	Studio	with	refactoring	support	for	VB,	VB.NET.	C#	and	C++)
DMS	Software	Reengineering	Toolkit	(Implements	large-scale	refactoring	for	C,	C++,	C#,	COBOL,	Java,	PHP	and	other	languages)
Photran	a	Fortran	plugin	for	the	Eclipse	IDE
SharpSort	addin	for	Visual	Studio	2008
Sigasi	Studio	-	standalone	or	plugin	software	for	VHDL	and	System	Verilog
XCode
Smalltalk	Refactoring	Browser	(for	Smalltalk)
Simplifide	(for	Verilog,	VHDL	and	SystemVerilog)
Tidier	(for	Erlang)

1.	 Scott	Ambler
2.	 Kerievsky,	Joshua	(2004).	Refactoring	to	Patterns.	Addison	Wesley.
3.	 Fowler,	Martin	(1999).	Refactoring:	Improving	the	design	of	existing	code.	Addison	Wesley.
4.	 Martin,	Robert	(2009).	Clean	Code.	Prentice	Hall.
5.	 Refactoring	techniques	in	Fowler's	refactoring	Website	(http://www.refactoring.com/catalog/index.html)
6.	 Replace	type-checking	code	with	State/Strategy	(http://www.refactoring.com/catalog/replaceTypeCodeWithStateStrategy.html)
7.	 Replace	conditional	with	polymorphism	(http://www.refactoring.com/catalog/replaceConditionalWithPolymorphism.html)
8.	 Hardware	description	languages	and	programming	languages
9.	 Kaiping	Zeng,	Sorin	A.	Huss,	"Architecture	refinements	by	code	refactoring	of	behavioral	VHDL-AMS	models".	ISCAS	2006
10.	 M.	Keating	:"Complexity,	Abstraction,	and	the	Challenges	of	Designing	Complex	Systems",	in	DAC'08	tutorial	[4]

a	Verification	Gap:	C++	to	RTL	for	Practical	Design"

History

Automated	code	refactoring

References

news://comp.lang.vhdl
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-297
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-opdyke-thesis-298
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-fowler-287
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-etymology-299
https://en.wikibooks.org/wiki/Wikibooks:OR
http://kenai.com/projects/refactoringng/
http://www.refactoring.com/catalog/index.html
http://www.refactoring.com/catalog/replaceTypeCodeWithStateStrategy.html
http://www.refactoring.com/catalog/replaceConditionalWithPolymorphism.html
http://www.dac.com/events/eventdetails.aspx?id=77-130

www.manaraa.com

a	Verification	Gap:	C++	to	RTL	for	Practical	Design"
11.	 M.	Keating,	P.	Bricaud:	Reuse	Methodology	Manual	for	System-on-a-Chip	Designs,	Kluwer	Academic	Publishers,	1999.
12.	 http://newsgroups.derkeiler.com/Archive/Comp/comp.lang.vhdl/2008-06/msg00173.html
13.	 www.eetimes.com/news/latest/showArticle.jhtml?articleID=222001855	(http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=222001855)
14.	 Opdyke,	William	F	(June	1992)	(compressed	Postscript).	Refactoring	Object-Oriented	Frameworks.	Ph.D.	thesis.	University	of	Illinois	at	Urbana-Champaign

ftp://st.cs.uiuc.edu/pub/papers/refactoring/opdyke-thesis.ps.Z.	Retrieved	2008-02-12.
15.	 Martin	Fowler,	"MF	Bliki:	EtymologyOfRefactoring"	(http://martinfowler.com/bliki/EtymologyOfRefactoring.html)
16.	 Opdyke,	William	F.;	Johnson,	Ralph	E.	(September	1990).	"Refactoring:	An	Aid	in	Designing	Application	Frameworks	and	Evolving	Object-Oriented	Systems".	

Symposium	on	Object	Oriented	Programming	Emphasizing	Practical	Applications	(SOOPPA).	ACM.

Fowler,	Martin	(1999).	Refactoring.	Improving	the	Design	of	Existing	Code.	Addison-Wesley.	ISBN	0-201-48567-2
Wake,	William	C.	(2003).	Refactoring	Workbook.	Addison-Wesley.	ISBN	0-321-10929-5.
Mens,	Tom	and	Tourwé,	Tom	(2004)	A	Survey	of	Software	Refactoring	(http://doi.ieeecomputersociety.org/10.1109/TSE.2004.1265817)
February	2004	(vol.	30	no.	2),	pp.	126-139
Feathers,	Michael	C	(2004).	Working	Effectively	with	Legacy	Code.	Prentice	Hall.	ISBN	0-13-117705-2.
Kerievsky,	Joshua	(2004).	Refactoring	To	Patterns.	Addison-Wesley.	ISBN	0-321-21335-1.
Arsenovski,	Danijel	(2008).	Professional	Refactoring	in	Visual	Basic.	Wrox.	ISBN	0-47-017979-1.
Arsenovski,	Danijel	(2009).	Professional	Refactoring	in	C#	and	ASP.NET.	Wrox.	ISBN	978-0470434529.
Ritchie,	Peter	(2010).	Refactoring	with	Visual	Studio	2010.	Packt.	ISBN	978-1849680103.

What	Is	Refactoring?	(http://c2.com/cgi/wiki?WhatIsRefactoring)	(c2.com	article)
Martin	Fowler's	homepage	about	refactoring	(http://www.refactoring.com/)
Aspect-Oriented	Refactoring	(http://www.theserverside.com/articles/article.tss?l=AspectOrientedRefactoringPart1)
A	Survey	of	Software	Refactoring	(http://csdl.computer.org/comp/trans/ts/2004/02/e2toc.htm)	by	Tom	Mens	and	Tom	Tourwé
Refactoring	(http://www.dmoz.org/Computers/Programming/Methodologies/Refactoring/)	at	DMOZ
Refactoring	Java	Code	(http://www.methodsandtools.com/archive/archive.php?id=4)
Refactoring	To	Patterns	Catalog	(http://industriallogic.com/xp/refactoring/catalog.html)
Extract	Boolean	Variable	from	Conditional	(http://www.industriallogic.com/papers/extractboolean.html)	(a	refactoring	pattern	not	listed	in	the	above	catalog)
Test-Driven	Development	With	Refactoring	(http://www.testingtv.com/2009/09/24/test-driven-development-with-refactoring/)
Revisiting	Fowler’s	Video	Store:	Refactoring	Code,	Refining	Abstractions	(http://blog.symprise.net/2009/04/revisiting-fowlers-video-store-refactoring-code-reengineering-abstractions/)

Software	Quality

In	 the	context	of	 software	engineering,	software	quality	measures	how	well	 software	 is	designed	 (quality	of	design
conformance),[1]	although	there	are	several	different	definitions.	It	is	often	described	as	the	'fitness	for	purpose'	of	a	piece	of	software.

Whereas	quality	of	conformance	is	concerned	with	implementation	(see	Software	Quality	Assurance),	quality	of	design
worthwhile	product.[2]

One	of	the	challenges	of	software	quality	is	that	"everyone	feels	they	understand	it".[3]

Software	quality	may	be	defined	as	conformance	to	explicitly	stated	functional	and	performance	requirements,	explicitly	documented	development	standards	and	implicit	characteristics
that	are	expected	of	all	professionally	developed	software.

The	three	key	points	in	this	definition:

1.	 Software	requirements	are	the	foundations	from	which	quality	is	measured.

Lack	of	conformance	to	requirement	is	lack	of	quality.

2.	 Specified	standards	define	a	set	of	development	criteria	that	guide	the	manager	is	software	engineering.

Further	reading

External	links

Introduction

Definition

http://newsgroups.derkeiler.com/Archive/Comp/comp.lang.vhdl/2008-06/msg00173.html
http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=222001855
https://en.wikipedia.org/wiki/William_Opdyke
ftp://st.cs.uiuc.edu/pub/papers/refactoring/opdyke-thesis.ps.Z
ftp://st.cs.uiuc.edu/pub/papers/refactoring/opdyke-thesis.ps.Z
http://martinfowler.com/bliki/EtymologyOfRefactoring.html
https://en.wikipedia.org/wiki/William_Opdyke
https://en.wikipedia.org/wiki/Martin_Fowler
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-201-48567-2
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-321-10929-5
http://doi.ieeecomputersociety.org/10.1109/TSE.2004.1265817
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-13-117705-2
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-321-21335-1
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-47-017979-1
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/978-0470434529
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/978-1849680103
http://c2.com/cgi/wiki?WhatIsRefactoring
http://www.refactoring.com/
http://www.theserverside.com/articles/article.tss?l=AspectOrientedRefactoringPart1
http://csdl.computer.org/comp/trans/ts/2004/02/e2toc.htm
http://www.dmoz.org/Computers/Programming/Methodologies/Refactoring/
https://en.wikipedia.org/wiki/DMOZ
http://www.methodsandtools.com/archive/archive.php?id=4
http://industriallogic.com/xp/refactoring/catalog.html
http://www.industriallogic.com/papers/extractboolean.html
http://www.testingtv.com/2009/09/24/test-driven-development-with-refactoring/
http://blog.symprise.net/2009/04/revisiting-fowlers-video-store-refactoring-code-reengineering-abstractions/
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Press746-301
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-302
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-303

www.manaraa.com

If	criteria	are	not	followed	lack	of	quality	will	usually	result.

3.	 A	set	of	implicit	requirements	often	goes	unmentioned,	for	example	ease	of	use,	maintainability	etc.

If	software	confirms	to	its	explicit	requirement	but	fails	to	meet	implicit	requirements,	software	quality	is	suspected.

A	definition	in	Steve	McConnell's	Code	Complete	divides	software	into	two	pieces:	internal	and	external	quality	characteristics
a	product	that	face	its	users,	where	internal	quality	characteristics	are	those	that	do	not.[4]

Another	 definition	 by	Dr.	Tom	DeMarco	 says	 "a	 product's	 quality	 is	 a	 function	 of	 how	much	 it	 changes	 the	world	 for	 the	 better."
satisfaction	is	more	important	than	anything	in	determining	software	quality.[1]

Another	definition,	coined	by	Gerald	Weinberg	in	Quality	Software	Management:	Systems	Thinking,	is	"Quality	is	value	to	some	person."	This	definition	stresses	that	quality	is	inherently
subjective	-	different	people	will	experience	the	quality	of	the	same	software	very	differently.	One	strength	of	this	definition	is	the	questions	it	invites	software	teams	to	consider,	such	as
"Who	are	the	people	we	want	to	value	our	software?"	and	"What	will	be	valuable	to	them?"

Correctness
Product	quality

conformance	to	requirements	or	program	specification;	related	to	Reliability
Scalability
Completeness
Absence	of	bugs
Fault-tolerance

Extensibility
Maintainability

Documentation
The	Consortium	for	IT	Software	Quality	(CISQ)	was	launched	in	2009	to	standardize	the	measurement	of	software	product	quality.	The	Consortium's	goal	is	to	bring	together	industry
executives	 from	Global	 2000	 IT	organizations,	 system	 integrators,	 outsourcers,	 and	package	vendors	 to	 jointly	 address	 the	 challenge	 of	 standardizing	 the	measurement	 of	 IT	 software
quality	and	to	promote	a	market-based	ecosystem	to	support	its	deployment.

A	computer	has	no	concept	of	"well-written"	source	code.	However,	from	a	human	point	of	view	source	code	can	be	written	in	a	way	that	has	an	effect	on	the	effort	needed	to	comprehend
its	 behavior.	 Many	 source	 code	 programming	 style	 guides,	 which	 often	 stress	 readability	 and	 usually	 language-specific	 conventions	 are	 aimed	 at	 reducing	 the	 cost	 of	 source	 code
maintenance.	Some	of	the	issues	that	affect	code	quality	include:

Readability
Ease	of	maintenance,	testing,	debugging,	fixing,	modification	and	portability
Low	complexity
Low	resource	consumption:	memory,	CPU
Number	of	compilation	or	lint	warnings
Robust	input	validation	and	error	handling,	established	by	software	fault	injection

Methods	to	improve	the	quality:

Refactoring
Code	Inspection	or	software	review
Documenting	code

Software	reliability	is	an	important	facet	of	software	quality.	It	is	defined	as	"the	probability	of	failure-free	operation	of	a	computer	program	in	a	specified	environment	for	a	specified
time".[6]

One	of	 reliability's	distinguishing	characteristics	 is	 that	 it	 is	objective,	measurable,	and	can	be	estimated,	whereas	much	of	 software	quality	 is	 subjective	criteria.
especially	important	in	the	discipline	of	Software	Quality	Assurance.	These	measured	criteria	are	typically	called	software	metrics.

With	software	embedded	into	many	devices	today,	software	failure	has	caused	more	than	inconvenience.	Software	errors	have	even	caused	human	fatalities.	The	causes	have	ranged	from

History

Software	product	quality

Source	code	quality

Software	reliability

History

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-304
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Press746-301
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-306

www.manaraa.com

With	software	embedded	into	many	devices	today,	software	failure	has	caused	more	than	inconvenience.	Software	errors	have	even	caused	human	fatalities.	The	causes	have	ranged	from
poorly	designed	user	interfaces	to	direct	programming	errors.	An	example	of	a	programming	error	that	lead	to	multiple	deaths	is	discussed	in	Dr.	Leveson's	paper	
.edu/papers/therac.pdf)	 (PDF).	This	has	 resulted	 in	 requirements	 for	development	of	 some	 types	 software.	 In	 the	United	States,	both	 the	Food	and	Drug	Administration	 (FDA)	and
Federal	Aviation	Administration	(FAA)	have	requirements	for	software	development.

The	need	for	a	means	to	objectively	determine	software	reliability	comes	from	the	desire	to	apply	the	techniques	of	contemporary	engineering	fields	to	the	development	of	software.	That
desire	is	a	result	of	the	common	observation,	by	both	lay-persons	and	specialists,	that	computer	software	does	not	work	the	way	it	ought	to.	In	other	words,	software	is	seen	to	exhibit
undesirable	behaviour,	up	to	and	including	outright	failure,	with	consequences	for	the	data	which	is	processed,	the	machinery	on	which	the	software	runs,	and	by	extension	the	people	and
materials	which	those	machines	might	negatively	affect.	The	more	critical	the	application	of	the	software	to	economic	and	production	processes,	or	to	 life-sustaining	systems,	the	more
important	is	the	need	to	assess	the	software's	reliability.

Regardless	of	the	criticality	of	any	single	software	application,	 it	 is	also	more	and	more	 frequently	observed	that	software	has	penetrated	deeply	 into	most	every	aspect	of	modern	 life
through	the	technology	we	use.	It	is	only	expected	that	this	infiltration	will	continue,	along	with	an	accompanying	dependency	on	the	software	by	the	systems	which	maintain	our	society.
As	software	becomes	more	and	more	crucial	to	the	operation	of	the	systems	on	which	we	depend,	the	argument	goes,	it	only	follows	that	the	software	should	offer	a	concomitant	level	of
dependability.	In	other	words,	the	software	should	behave	in	the	way	it	is	intended,	or	even	better,	in	the	way	it	should.

The	circular	 logic	of	 the	preceding	 sentence	 is	not	accidental—it	 is	meant	 to	 illustrate	a	 fundamental	problem	 in	 the	 issue	of	measuring	 software	 reliability,	which	 is	 the	difficulty	of
determining,	 in	advance,	exactly	how	the	software	 is	 intended	to	operate.	The	problem	seems	to	stem	from	a	common	conceptual	error	 in	the	consideration	of	software,	which	 is	that
software	in	some	sense	takes	on	a	role	which	would	otherwise	be	filled	by	a	human	being.	This	is	a	problem	on	two	levels.	Firstly,	most	modern	software	performs	work	which	a	human
could	never	perform,	especially	at	the	high	level	of	reliability	that	is	often	expected	from	software	in	comparison	to	humans.	Secondly,	software	is	fundamentally	incapable	of	most	of	the
mental	capabilities	of	humans	which	separate	them	from	mere	mechanisms:	qualities	such	as	adaptability,	general-purpose	knowledge,	a	sense	of	conceptual	and	functional	context,	and
common	sense.

Nevertheless,	most	 software	 programs	 could	 safely	 be	 considered	 to	 have	 a	 particular,	 even	 singular	 purpose.	 If	 the	 possibility	 can	 be	 allowed	 that	 said	 purpose	 can	 be	well	 or	 even
completely	defined,	it	should	present	a	means	for	at	least	considering	objectively	whether	the	software	is,	in	fact,	reliable,	by	comparing	the	expected	outcome	to	the	actual	outcome	of
running	the	software	in	a	given	environment,	with	given	data.	Unfortunately,	it	is	still	not	known	whether	it	is	possible	to	exhaustively	determine	either	the	expected	outcome	or	the	actual
outcome	of	the	entire	set	of	possible	environment	and	input	data	to	a	given	program,	without	which	it	is	probably	impossible	to	determine	the	program's	reliability	with	any	certainty.

However,	various	attempts	are	 in	 the	works	 to	attempt	 to	 rein	 in	 the	vastness	of	 the	 space	of	 software's	 environmental	and	 input	variables,	both	 for	actual	programs	and	theoretical
descriptions	of	programs.	Such	attempts	to	improve	software	reliability	can	be	applied	at	different	stages	of	a	program's	development,	in	the	case	of	real	software.	These	stages	principally
include:	requirements,	design,	programming,	testing,	and	runtime	evaluation.	The	study	of	theoretical	software	reliability	is	predominantly	concerned	with	the	concept	of	correctness,	a
mathematical	field	of	computer	science	which	is	an	outgrowth	of	language	and	automata	theory.

A	program	cannot	be	expected	to	work	as	desired	if	the	developers	of	the	program	do	not,	in	fact,	know	the	program's	desired	behaviour	in	advance,	or	if	they	cannot	at	least	determine	its
desired	behaviour	 in	 parallel	with	development,	 in	 sufficient	 detail.	What	 level	 of	 detail	 is	 considered	 sufficient	 is	 hotly	 debated.	The	 idea	 of	 perfect	 detail	 is	 attractive,	 but	may	be
impractical,	 if	 not	 actually	 impossible.	This	 is	 because	 the	 desired	 behaviour	 tends	 to	 change	 as	 the	 possible	 range	 of	 the	 behaviour	 is	 determined	 through	 actual	 attempts,	 or	more
accurately,	failed	attempts,	to	achieve	it.

Whether	a	program's	desired	behaviour	can	be	successfully	specified	in	advance	is	a	moot	point	if	the	behaviour	cannot	be	specified	at	all,	and	this	is	the	focus	of	attempts	to	formalize	the
process	of	creating	requirements	for	new	software	projects.	In	situ	with	the	formalization	effort	is	an	attempt	to	help	inform	non-specialists,	particularly	non-programmers,	who	commission
software	projects	without	sufficient	knowledge	of	what	computer	software	is	in	fact	capable.	Communicating	this	knowledge	is	made	more	difficult	by	the	fact	that,	as	hinted	above,	even
programmers	cannot	always	know	in	advance	what	is	actually	possible	for	software	in	advance	of	trying.

While	requirements	are	meant	to	specify	what	a	program	should	do,	design	is	meant,	at	least	at	a	high	level,	to	specify	how	the	program	should	do	it.	The	usefulness	of	design	is	also
questioned	by	some,	but	those	who	look	to	formalize	the	process	of	ensuring	reliability	often	offer	good	software	design	processes	as	the	most	significant	means	to	accomplish	it.	Software
design	usually	involves	the	use	of	more	abstract	and	general	means	of	specifying	the	parts	of	the	software	and	what	they	do.	As	such,	it	can	be	seen	as	a	way	to	break	a	large	program
down	into	many	smaller	programs,	such	that	those	smaller	pieces	together	do	the	work	of	the	whole	program.

The	purposes	of	high-level	design	are	as	follows.	It	separates	what	are	considered	to	be	problems	of	architecture,	or	overall	program	concept	and	structure,	from	problems	of	actual	coding,
which	solve	problems	of	actual	data	processing.	It	applies	additional	constraints	to	the	development	process	by	narrowing	the	scope	of	the	smaller	software	components,	and	thereby—it	is
hoped—removing	variables	which	could	increase	the	likelihood	of	programming	errors.	It	provides	a	program	template,	 including	the	specification	of	 interfaces,	which	can	be	shared	by
different	teams	of	developers	working	on	disparate	parts,	such	that	they	can	know	in	advance	how	each	of	their	contributions	will	interface	with	those	of	the	other	teams.	Finally,	and
perhaps	most	controversially,	it	specifies	the	program	independently	of	the	implementation	language	or	languages,	thereby	removing	language-specific	biases	and	limitations	which	would
otherwise	creep	into	the	design,	perhaps	unwittingly	on	the	part	of	programmer-designers.

The	history	 of	 computer	programming	 language	development	 can	 often	be	best	understood	 in	 the	 light	 of	 attempts	 to	master	 the	 complexity	 of	 computer	programs,	which	 otherwise
becomes	more	difficult	to	understand	in	proportion	(perhaps	exponentially)	to	the	size	of	the	programs.	(Another	way	of	looking	at	the	evolution	of	programming	languages	is	simply	as	a
way	of	getting	the	computer	to	do	more	and	more	of	the	work,	but	this	may	be	a	different	way	of	saying	the	same	thing).	Lack	of	understanding	of	a	program's	overall	structure	and
functionality	is	a	sure	way	to	fail	to	detect	errors	in	the	program,	and	thus	the	use	of	better	languages	should,	conversely,	reduce	the	number	of	errors	by	enabling	a	better	understanding.

Improvements	 in	 languages	tend	to	provide	incrementally	what	software	design	has	attempted	to	do	in	one	fell	swoop:	consider	the	software	at	ever	greater	 levels	of	abstraction.	Such
inventions	as	statement,	sub-routine,	file,	class,	template,	library,	component	and	more	have	allowed	the	arrangement	of	a	program's	parts	to	be	specified	using	abstractions	such	as	layers,
hierarchies	and	modules,	which	provide	structure	at	different	granularities,	so	that	from	any	point	of	view	the	program's	code	can	be	imagined	to	be	orderly	and	comprehensible.

In	addition,	improvements	in	languages	have	enabled	more	exact	control	over	the	shape	and	use	of	data	elements,	culminating	in	the	abstract	data	type.	These	data	types	can	be	specified
to	a	very	fine	degree,	including	how	and	when	they	are	accessed,	and	even	the	state	of	the	data	before	and	after	it	is	accessed..

Many	programming	languages	such	as	C	and	Java	require	the	program	"source	code"	to	be	translated	in	to	a	form	that	can	be	executed	by	a	computer.	This	translation	is	done	by	a
program	 called	 a	 compiler.	Additional	 operations	may	 be	 involved	 to	 associate,	 bind,	 link	 or	 package	 files	 together	 in	 order	 to	 create	 a	 usable	 runtime	 configuration	 of	 the	 software
application.	The	totality	of	the	compiling	and	assembly	process	is	generically	called	"building"	the	software.

The	 software	 build	 is	 critical	 to	 software	 quality	 because	 if	 any	 of	 the	 generated	 files	 are	 incorrect	 the	 software	 build	 is	 likely	 to	 fail.	And,	 if	 the	 incorrect	 version	 of	 a	 program	 is
inadvertently	used,	then	testing	can	lead	to	false	results.

Goal	of	reliability

Challenge	of	reliability

Reliability	in	program	development

Requirements

Design

Programming

Software	Build	and	Deployment

http://sunnyday.mit.edu/papers/therac.pdf

www.manaraa.com

Software	builds	are	 typically	done	 in	work	area	unrelated	 to	 the	 runtime	area,	 such	as	 the	application	 server.	For	 this	 reason,	a	deployment	 step	 is	needed	 to	physically	 transfer	 the
software	build	products	to	the	runtime	area.	The	deployment	procedure	may	also	involve	technical	parameters,	which,	if	set	incorrectly,	can	also	prevent	software	testing	from	beginning.
For	example,	a	Java	application	server	may	have	options	for	parent-first	or	parent-last	class	 loading.	Using	the	incorrect	parameter	can	cause	the	application	to	fail	to	execute	on	the
application	server.

The	technical	activities	supporting	software	quality	including	build,	deployment,	change	control	and	reporting	are	collectively	known	as	Software	configuration	management.	A	number	of
software	tools	have	arisen	to	help	meet	the	challenges	of	configuration	management	including	file	control	tools	and	build	control	tools.

Software	testing,	when	done	correctly,	can	increase	overall	software	quality	of	conformance	by	testing	that	the	product	conforms	to	its	requirements.
limited	to:

1.	 Unit	Testing
2.	 Functional	Testing
3.	 Regression	Testing
4.	 Performance	Testing
5.	 Failover	Testing
6.	 Usability	Testing
A	number	of	agile	methodologies	use	testing	early	in	the	development	cycle	to	ensure	quality	in	their	products.	For	example,	the	test-driven	development	practice,	where	tests	are	written
before	the	code	they	will	test,	is	used	in	Extreme	Programming	to	ensure	quality.

runtime	reliability	determinations	are	similar	to	tests,	but	go	beyond	simple	confirmation	of	behaviour	to	the	evaluation	of	qualities	such	as	performance	and	interoperability	with	other
code	or	particular	hardware	configurations.

A	software	quality	 factor	 is	a	non-functional	 requirement	 for	a	 software	program	which	 is	not	called	up	by	the	customer's	 contract,	but	nevertheless	 is	a	desirable	 requirement	which
enhances	the	quality	of	the	software	program.	Note	that	none	of	these	factors	are	binary;	that	is,	they	are	not	“either	you	have	it	or	you	don’t”	traits.	Rather,	they	are	characteristics	that
one	seeks	to	maximize	in	one’s	software	to	optimize	its	quality.	So	rather	than	asking	whether	a	software	product	“has”	factor	

Some	software	quality	factors	are	listed	here:

Understandability
Clarity	of	purpose.	This	goes	further	than	just	a	statement	of	purpose;	all	of	the	design	and	user	documentation	must	be	clearly	written	so	that	it	is	easily	understandable.	This	is
obviously	subjective	in	that	the	user	context	must	be	taken	into	account:	for	instance,	if	the	software	product	is	to	be	used	by	software	engineers	it	is	not	required	to	be	understandable
to	the	layman.

Completeness
Presence	of	all	constituent	parts,	with	each	part	fully	developed.	This	means	that	if	the	code	calls	a	subroutine	from	an	external	library,	the	software	package	must	provide	reference	to
that	library	and	all	required	parameters	must	be	passed.	All	required	input	data	must	also	be	available.

Conciseness
Minimization	of	excessive	or	redundant	information	or	processing.	This	is	important	where	memory	capacity	is	limited,	and	it	is	generally	considered	good	practice	to	keep	lines	of	code
to	a	minimum.	It	can	be	improved	by	replacing	repeated	functionality	by	one	subroutine	or	function	which	achieves	that	functionality.	It	also	applies	to	documents.

Portability
Ability	to	be	run	well	and	easily	on	multiple	computer	configurations.	Portability	can	mean	both	between	different	hardware—such	as	running	on	a	PC	as	well	as	a	smartphone—and
between	different	operating	systems—such	as	running	on	both	Mac	OS	X	and	GNU/Linux.

Consistency
Uniformity	in	notation,	symbology,	appearance,	and	terminology	within	itself.

Maintainability
Propensity	to	facilitate	updates	to	satisfy	new	requirements.	Thus	the	software	product	that	is	maintainable	should	be	well-documented,	should	not	be	complex,	and	should	have	spare
capacity	for	memory,	storage	and	processor	utilization	and	other	resources.

Testability
Disposition	to	support	acceptance	criteria	and	evaluation	of	performance.	Such	a	characteristic	must	be	built-in	during	the	design	phase	if	the	product	is	to	be	easily	testable;	a
complex	design	leads	to	poor	testability.

Usability
Convenience	and	practicality	of	use.	This	is	affected	by	such	things	as	the	human-computer	interface.	The	component	of	the	software	that	has	most	impact	on	this	is	the	user	interface

Testing

Runtime

Software	quality	factors

www.manaraa.com

(UI),	which	for	best	usability	is	usually	graphical	(i.e.	a	GUI).

Reliability
Ability	to	be	expected	to	perform	its	intended	functions	satisfactorily.	This	implies	a	time	factor	in	that	a	reliable	product	is	expected	to	perform	correctly	over	a	period	of	time.	It	also
encompasses	environmental	considerations	in	that	the	product	is	required	to	perform	correctly	in	whatever	conditions	it	finds	itself	(sometimes	termed	robustness).

Efficiency
Fulfillment	of	purpose	without	waste	of	resources,	such	as	memory,	space	and	processor	utilization,	network	bandwidth,	time,	etc.

Security
Ability	to	protect	data	against	unauthorized	access	and	to	withstand	malicious	or	inadvertent	interference	with	its	operations.	Besides	the	presence	of	appropriate	security	mechanisms
such	as	authentication,	access	control	and	encryption,	security	also	implies	resilience	in	the	face	of	malicious,	intelligent	and	adaptive	attackers.

There	are	varied	perspectives	within	the	field	on	measurement.	There	are	a	great	many	measures	that	are	valued	by	some	professionals—or	in	some	contexts,	that	are	decried	as	harmful
by	others.	Some	believe	 that	quantitative	measures	of	 software	quality	are	essential.	Others	believe	 that	contexts	where	quantitative	measures	are	useful	are	quite	 rare,	and	 so	prefer
qualitative	measures.	Several	leaders	in	the	field	of	software	testing	have	written	about	the	difficulty	of	measuring	what	we	truly	want	to	measure	well.

One	example	of	a	popular	metric	is	the	number	of	faults	encountered	in	the	software.	Software	that	contains	few	faults	is	considered	by	some	to	have	higher	quality	than	software	that
contains	many	faults.	Questions	that	can	help	determine	the	usefulness	of	this	metric	in	a	particular	context	include:

1.	 What	constitutes	“many	faults?”	Does	this	differ	depending	upon	the	purpose	of	the	software	(e.g.,	blogging	software	vs.	navigational	software)?	Does	this	take	into	account	the	size
and	complexity	of	the	software?

2.	 Does	this	account	for	the	importance	of	the	bugs	(and	the	importance	to	the	stakeholders	of	the	people	those	bugs	bug)?	Does	one	try	to	weight	this	metric	by	the	severity	of	the	fault,
or	the	incidence	of	users	it	affects?	If	so,	how?	And	if	not,	how	does	one	know	that	100	faults	discovered	is	better	than	1000?

3.	 If	the	count	of	faults	being	discovered	is	shrinking,	how	do	I	know	what	that	means?	For	example,	does	that	mean	that	the	product	is	now	higher	quality	than	it	was	before?	Or	that
this	is	a	smaller/less	ambitious	change	than	before?	Or	that	fewer	tester-hours	have	gone	into	the	project	than	before?	Or	that	this	project	was	tested	by	less	skilled	testers	than
before?	Or	that	the	team	has	discovered	that	fewer	faults	reported	is	in	their	interest?

This	last	question	points	to	an	especially	difficult	one	to	manage.	All	software	quality	metrics	are	in	some	sense	measures	of	human	behavior,	since	humans	create	software.
discovers	that	they	will	benefit	from	a	drop	in	the	number	of	reported	bugs,	there	is	a	strong	tendency	for	the	team	to	start	reporting	fewer	defects.	That	may	mean	that	email	begins	to
circumvent	the	bug	tracking	system,	or	that	four	or	five	bugs	get	lumped	into	one	bug	report,	or	that	testers	learn	not	to	report	minor	annoyances.	The	difficulty	is	measuring	what	we
mean	to	measure,	without	creating	incentives	for	software	programmers	and	testers	to	consciously	or	unconsciously	“game”	the	measurements.

Software	quality	factors	cannot	be	measured	because	of	their	vague	definitions.	It	 is	necessary	to	find	measurements,	or	metrics,	which	can	be	used	to	quantify	them	as	non-functional
requirements.	For	 example,	 reliability	 is	 a	 software	 quality	 factor,	 but	 cannot	be	 evaluated	 in	 its	 own	 right.	However,	 there	 are	 related	 attributes	 to	 reliability,	which	 can	 indeed	be
measured.	Some	such	attributes	are	mean	time	to	failure,	rate	of	failure	occurrence,	and	availability	of	the	system.	Similarly,	an	attribute	of	portability	is	the	number	of	target-dependent
statements	in	a	program.

A	scheme	that	could	be	used	for	evaluating	software	quality	factors	is	given	below.	For	every	characteristic,	there	are	a	set	of	questions	which	are	relevant	to	that	characteristic.	Some	type
of	scoring	formula	could	be	developed	based	on	the	answers	to	these	questions,	from	which	a	measurement	of	the	characteristic	can	be	obtained.

Are	 variable	 names	descriptive	 of	 the	physical	 or	 functional	 property	 represented?	Do	uniquely	 recognisable	 functions	 contain	 adequate	 comments	 so	 that	 their	 purpose	 is	 clear?	Are
deviations	from	forward	logical	flow	adequately	commented?	Are	all	elements	of	an	array	functionally	related?....

Are	all	necessary	components	available?	Does	any	process	fail	 for	 lack	of	resources	or	programming?	Are	all	potential	pathways	through	the	code	accounted	for,	 including	proper	error
handling?

Is	all	code	reachable?	Is	any	code	redundant?	How	many	statements	within	loops	could	be	placed	outside	the	loop,	thus	reducing	computation	time?	Are	branch	decisions	too	complex?

Does	 the	program	depend	upon	 system	or	 library	 routines	unique	 to	 a	particular	 installation?	Have	machine-dependent	 statements	been	 flagged	and	 commented?	Has	dependency	on
internal	 bit	 representation	 of	 alphanumeric	 or	 special	 characters	 been	 avoided?	 How	much	 effort	 would	 be	 required	 to	 transfer	 the	 program	 from	 one	 hardware/software	 system	 or
environment	to	another?

Is	one	variable	name	used	to	represent	different	 logical	or	physical	entities	 in	the	program?	Does	the	program	contain	only	one	representation	 for	any	given	physical	or	mathematical
constant?	 Are	 functionally	 similar	 arithmetic	 expressions	 similarly	 constructed?	 Is	 a	 consistent	 scheme	 used	 for	 indentation,	 nomenclature,	 the	 color	 palette,	 fonts	 and	 other	 visual
elements?

Has	 some	memory	capacity	been	 reserved	 for	 future	 expansion?	 Is	 the	design	 cohesive—i.e.,	does	 each	module	have	distinct,	 recognizable	 functionality?	Does	 the	 software	allow	 for	a
change	in	data	structures	(object-oriented	designs	are	more	likely	to	allow	for	this)?	If	the	code	is	procedure-based	(rather	than	object-oriented),	is	a	change	likely	to	require	restructuring
the	main	program,	or	just	a	module?

Are	complex	structures	employed	in	the	code?	Does	the	detailed	design	contain	clear	pseudo-code?	Is	the	pseudo-code	at	a	higher	level	of	abstraction	than	the	code?	If	tasking	is	used	in

Measurement	of	software	quality	factors

Understandability

Completeness

Conciseness

Portability

Consistency

Maintainability

Testability

www.manaraa.com

Are	complex	structures	employed	in	the	code?	Does	the	detailed	design	contain	clear	pseudo-code?	Is	the	pseudo-code	at	a	higher	level	of	abstraction	than	the	code?	If	tasking	is	used	in
concurrent	designs,	are	schemes	available	for	providing	adequate	test	cases?

Is	a	GUI	used?	Is	there	adequate	on-line	help?	Is	a	user	manual	provided?	Are	meaningful	error	messages	provided?

Are	 loop	 indexes	 range-tested?	 Is	 input	data	 checked	 for	 range	 errors?	 Is	 divide-by-zero	 avoided?	 Is	 exception	handling	provided?	 It	 is	 the	probability	 that	 the	 software	performs	 its
intended	functions	correctly	in	a	specified	period	of	time	under	stated	operation	conditions,	but	there	could	also	be	a	problem	with	the	requirement	document...

Have	functions	been	optimized	for	speed?	Have	repeatedly	used	blocks	of	code	been	formed	into	subroutines?	Has	the	program	been	checked	for	memory	leaks	or	overflow	errors?

Does	the	software	protect	itself	and	its	data	against	unauthorized	access	and	use?	Does	it	allow	its	operator	to	enforce	security	policies?	Are	security	mechanisms	appropriate,	adequate	and
correctly	implemented?	Can	the	software	withstand	attacks	that	can	be	anticipated	in	its	intended	environment?

In	addition	to	the	technical	qualities	of	software,	the	end	user's	experience	also	determines	the	quality	of	software.	This	aspect	of	software	quality	is	called	usability.	It	is	hard	to	quantify
the	usability	of	a	given	software	product.	Some	important	questions	to	be	asked	are:

Is	the	user	interface	intuitive	(self-explanatory/self-documenting)?
Is	it	easy	to	perform	simple	operations?
Is	it	feasible	to	perform	complex	operations?
Does	the	software	give	sensible	error	messages?
Do	widgets	behave	as	expected?
Is	the	software	well	documented?
Is	the	user	interface	responsive	or	too	slow?

Also,	the	availability	of	(free	or	paid)	support	may	factor	into	the	usability	of	the	software.

Notes

1.	 Pressman	2005,	p.	746
2.	 Pressman	2005,	p.	388
3.	 Crosby,	P.,	Quality	is	Free,	McGraw-Hill,	1979
4.	 McConnell	1993,	p.	558
5.	 DeMarco,	T.,	Management	Can	Make	Quality	(Im)possible,	Cutter	IT	Summit,	Boston,	April	1999
6.	 J.D.	Musa,	A.	Iannino,	and	K.	Okumoto,	Engineering	and	Managing	Software	with	Reliability	Measures,	McGraw-Hill,	1987
7.	 Pressman	2005,	p.	762
8.	 ISTQB	(http://istqbexamcertification.com/what-is-a-software-testing/)	-	What	is	software	testing?
9.	 Cem	Kaner	http://www.kaner.com/pdfs/metrics2004.pdf
10.	 Douglass	Hoffman	http://www.softwarequalitymethods.com/Papers/DarkMets%20Paper.pdf

Bibliography

McConnell,	Steve	(1993),	Code	Complete	(First	ed.),	Microsoft	Press
Pressman,	Scott	(2005),	Software	Engineering:	A	Practitioner's	Approach	(Sixth,	International	ed.),	McGraw-Hill	Education

International	Organization	for	Standardization.	Software	Engineering—Product	Quality—Part	1:	Quality	Model.	ISO,	Geneva,	Switzerland,	2001.	ISO/IEC	9126-1:2001(E).
Diomidis	Spinellis.	Code	Quality:	The	Open	Source	Perspective	(http://www.spinellis.gr/codequality).	Addison	Wesley,	Boston,	MA,	2006.
Ho-Won	Jung,	Seung-Gweon	Kim,	and	Chang-Sin	Chung.	Measuring	software	product	quality:	A	survey	of	ISO/IEC	9126
9).	IEEE	Software,	21(5):10–13,	September/October	2004.
Stephen	H.	Kan.	Metrics	and	Models	in	Software	Quality	Engineering.	Addison-Wesley,	Boston,	MA,	second	edition,	2002.
Robert	L.	Glass.	Building	Quality	Software.	Prentice	Hall,	Upper	Saddle	River,	NJ,	1992.
Roland	Petrasch,	"The	Definition	of‚	Software	Quality’:	A	Practical	Approach	(http://web.archive.org/web/20040719134818/http://www.chillarege.com/fastabstracts/issre99/99124.pdf

Usability

Reliability

Efficiency

Security

User's	perspective

References

Further	reading

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#CITEREFPressman2005
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#CITEREFPressman2005
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#CITEREFMcConnell1993
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#CITEREFPressman2005
http://istqbexamcertification.com/what-is-a-software-testing/
http://www.kaner.com/pdfs/metrics2004.pdf
http://www.softwarequalitymethods.com/Papers/DarkMets%20Paper.pdf
http://www.spinellis.gr/codequality
http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331309
http://web.archive.org/web/20040719134818/http://www.chillarege.com/fastabstracts/issre99/99124.pdf

www.manaraa.com

)",	ISSRE,	1999

Linux:	Fewer	Bugs	Than	Rivals	(http://www.wired.com/software/coolapps/news/2004/12/66022)	Wired	Magazine,	2004

Static	program	analysis	 is	 the	 analysis	 of	 computer	 software	 that	 is	 performed	without	 actually	 executing	 programs	 built	 from	 that	 software	 (analysis	 performed	 on	 executing
programs	is	known	as	dynamic	analysis).	In	most	cases	the	analysis	 is	performed	on	some	version	of	the	source	code	and	in	the	other	cases	some	form	of	the	object	code.	The	term	is
usually	applied	to	the	analysis	performed	by	an	automated	tool,	with	human	analysis	being	called	program	understanding,	program	comprehension	or	code	review.

The	sophistication	of	the	analysis	performed	by	tools	varies	from	those	that	only	consider	the	behavior	of	individual	statements	and	declarations,	to	those	that	include	the	complete	source
code	 of	 a	 program	 in	 their	 analysis.	 Uses	 of	 the	 information	 obtained	 from	 the	 analysis	 vary	 from	 highlighting	 possible	 coding	 errors	 (e.g.,	 the	 lint	 tool)	 to	 formal	 methods	 that
mathematically	prove	properties	about	a	given	program	(e.g.,	its	behavior	matches	that	of	its	specification).

It	can	be	argued	that	software	metrics	and	reverse	engineering	are	forms	of	static	analysis.

A	growing	commercial	use	of	static	analysis	is	in	the	verification	of	properties	of	software	used	in	safety-critical	computer	systems	and	locating	potentially	vulnerable	code.	For	example,
medical	software	is	increasing	in	sophistication	and	complexity,	and	the	U.S.	Food	and	Drug	Administration	(FDA)	has	identified	the	use	of	static	code	analysis	as	a	means	of	improving
the	quality	of	software[1].

Formal	methods	is	the	term	applied	to	the	analysis	of	software	(and	hardware)	whose	results	are	obtained	purely	through	the	use	of	rigorous	mathematical	methods.	The	mathematical
techniques	used	include	denotational	semantics,	axiomatic	semantics,	operational	semantics,	and	abstract	interpretation.

It	has	been	proven	that,	barring	some	hypothesis	that	the	state	space	of	programs	is	finite,	finding	all	possible	run-time	errors,	or	more	generally	any	kind	of	violation	of	a	specification	on
the	final	result	of	a	program,	is	undecidable:	there	is	no	mechanical	method	that	can	always	answer	truthfully	whether	a	given	program	may	or	may	not	exhibit	runtime	errors.	This	result
dates	from	the	works	of	Church,	Kurt	Gödel	and	Turing	in	the	1930s	(see	the	halting	problem	and	Rice's	theorem).	As	with	most
attempt	to	give	useful	approximate	solutions.

Some	of	the	implementation	techniques	of	formal	static	analysis	include:

Model	checking	considers	systems	that	have	finite	state	or	may	be	reduced	to	finite	state	by	abstraction;
Data-flow	analysis	is	a	lattice-based	technique	for	gathering	information	about	the	possible	set	of	values;
Abstract	interpretation	models	the	effect	that	every	statement	has	on	the	state	of	an	abstract	machine	(i.e.,	it	'executes'	the	software	based	on	the	mathematical	properties	of	each
statement	and	declaration).	This	abstract	machine	over-approximates	the	behaviours	of	the	system:	the	abstract	system	is	thus	made	simpler	to	analyze,	at	the	expense	of
incompleteness	(not	every	property	true	of	the	original	system	is	true	of	the	abstract	system).	If	properly	done,	though,	abstract	interpretation	is	
abstract	system	can	be	mapped	to	a	true	property	of	the	original	system)[2].	The	Frama-c	framework	and	Polyspace	heavily	rely	on	abstract	interpretation.
Use	of	assertions	in	program	code	as	first	suggested	by	Hoare	logic.	There	is	tool	support	for	some	programming	languages	(e.g.,	the	SPARK	programming	language	(a	subset	of	Ada)
and	the	Java	Modeling	Language	—	JML	—	using	ESC/Java	and	ESC/Java2,	ANSI/ISO	C	Specification	Language	for	the	C	language).

1.	 FDA	(2010-09-08).	"Infusion	Pump	Software	Safety	Research	at	FDA".	Food	and	Drug	Administration.
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm202511.htm

2.	 Jones,	Paul	(2010-02-09).	"A	Formal	Methods-based	verification	approach	to	medical	device	software	analysis".	Embedded	Systems	Design
http://embeddeddsp.embedded.com/design/opensource/222700533.	Retrieved	2010-09-09.

Syllabus	and	readings	(http://www.stanford.edu/class/cs295/)	for	Alex	Aiken	(http://theory.stanford.edu/~aiken/)
Nathaniel	Ayewah,	David	Hovemeyer,	J.	David	Morgenthaler,	John	Penix,	William	Pugh,	“Using	Static	Analysis	to	Find	Bugs
9/MS.2008.130),”	IEEE	Software,	vol.	25,	no.	5,	pp.	22-29,	Sep./Oct.	2008,	doi:10.1109/MS.2008.130
Brian	Chess,	Jacob	West	(Fortify	Software)	(2007).	Secure	Programming	with	Static	Analysis.	Addison-Wesley.	
Adam	Kolawa	(Parasoft),	Static	Analysis	Best	Practices	(http://www.parasoft.com/jsp/redirector.jsp/WWH_CodeAnalysis_W)
Improving	Software	Security	with	Precise	Static	and	Runtime	Analysis	(http://research.microsoft.com/en-us/um/people/livshits/papers/pdf/thesis.pdf)
“Static	Techniques	for	Security,”	Stanford	doctoral	thesis,	2006.
Flemming	Nielson,	Hanne	R.	Nielson,	Chris	Hankin	(1999,	corrected	2004).	Principles	of	Program	Analysis.	Springer.	
“Abstract	interpretation	and	static	analysis,”	(http://santos.cis.ksu.edu/schmidt/Escuela03/home.html)	International	Winter	School	on	Semantics	and	Applications	2003,	by	
Schmidt	(http://people.cis.ksu.edu/~schmidt/)

The	SAMATE	Project	(http://samate.nist.gov),	a	resource	for	Automated	Static	Analysis	tools

External	links

Static	Analysis

Formal	methods

References

Bibliography

External	links

http://web.archive.org/web/20040719134818/http://www.chillarege.com/fastabstracts/issre99/99124.pdf
http://www.wired.com/software/coolapps/news/2004/12/66022
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-311
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-312
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm202511.htm
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm202511.htm
http://embeddeddsp.embedded.com/design/opensource/222700533
http://embeddeddsp.embedded.com/design/opensource/222700533
http://www.stanford.edu/class/cs295/
http://theory.stanford.edu/~aiken/
http://www2.computer.org/portal/web/csdl/doi/10.1109/MS.2008.130
http://www.parasoft.com/jsp/redirector.jsp/WWH_CodeAnalysis_W
http://research.microsoft.com/en-us/um/people/livshits/papers/pdf/thesis.pdf
http://santos.cis.ksu.edu/schmidt/Escuela03/home.html
http://people.cis.ksu.edu/~schmidt/
http://samate.nist.gov/

www.manaraa.com

Integrate	static	analysis	into	a	software	development	process	(http://www.embedded.com/shared/printableArticle.jhtml?articleID=193500830)
Code	Quality	Improvement	-	Coding	standards	conformance	checking	(DDJ)	(http://www.ddj.com/dept/debug/189401916)
Episode	59:	Static	Code	Analysis	(http://www.se-radio.net/index.php?post_id=220531)	Interview	(Podcast)	at	Software	Engineering	Radio
Implementing	Automated	Governance	for	Coding	Standards	(http://www.infoq.com/articles/governance-coding-standards)
the	build	process

A	software	metric	is	a	measure	of	some	property	of	a	piece	of	software	or	its	specifications.	Since	quantitative	measurements	are	essential	in	all	sciences,	there	is	a	continuous	effort	by
computer	science	practitioners	and	theoreticians	to	bring	similar	approaches	to	software	development.	The	goal	is	obtaining	objective,	reproducible	and	quantifiable	measurements,	which
may	have	numerous	valuable	applications	in	schedule	and	budget	planning,	cost	estimation,	quality	assurance	testing,	software	debugging,	software	performance	optimization,	and	optimal
personnel	task	assignments.

Common	software	measurements	include:

Balanced	scorecard
Bugs	per	line	of	code
COCOMO
Code	coverage
Cohesion
Comment	density[1]

Connascent	software	components
Coupling
Cyclomatic	complexity
Function	point	analysis
Halstead	Complexity
Instruction	path	length
Number	of	classes	and	interfaces
Number	of	lines	of	code
Number	of	lines	of	customer	requirements
Program	execution	time
Program	load	time
Binary	file|Program	size	(binary)
Robert	Cecil	Martin’s	software	package	metrics
Weighted	Micro	Function	Points

As	 software	 development	 is	 a	 complex	 process,	with	 high	 variance	 on	 both	methodologies	 and	 objectives,	 it	 is	 difficult	 to	 define	 or	measure	 software	 qualities	 and	 quantities	 and	 to
determine	a	valid	and	concurrent	measurement	metric,	especially	when	making	such	a	prediction	prior	to	the	detail	design.	Another	source	of	difficulty	and	debate	is	in	determining	which
metrics	matter,	and	what	they	mean.[2][3]	The	practical	utility	of	software	measurements	has	thus	been	limited	to	narrow	domains	where	they	include:

Schedule
Size/Complexity
Cost
Quality

Common	goal	of	measurement	may	target	one	or	more	of	the	above	aspects,	or	the	balance	between	them	as	indicator	of	team’s	motivation	or	project	performance.

Some	software	development	practitioners	point	out	that	simplistic	measurements	can	cause	more	harm	than	good.[4]
software	development	process.[2]	 Impact	 of	measurement	 on	programmers	 psychology	have	 raised	 concerns	 for	 harmful	 effects	 to	 performance	due	 to	 stress,	 performance	 anxiety,	 and
attempts	to	cheat	 the	metrics,	while	others	 find	 it	 to	have	positive	 impact	on	developers	value	towards	their	own	work,	and	prevent	them	being	undervalued.
definition	of	many	measurement	methodologies	are	imprecise,	and	consequently	it	is	often	unclear	how	tools	for	computing	them	arrive	at	a	particular	result,
imperfect	quantification	is	better	than	none	(“You	can’t	control	what	you	can't	measure.”)[7].	Evidence	shows	that	software	metrics	are	being	widely	used	by	government	agencies,	the	US
military,	NASA[8],	IT	consultants,	academic	institutions[9],	and	commercial	and	academic	development	estimation	software.

Metrics

Common	software	measurements

Limitations

Acceptance	and	Public	Opinion

http://www.embedded.com/shared/printableArticle.jhtml?articleID=193500830
http://www.ddj.com/dept/debug/189401916
http://www.se-radio.net/index.php?post_id=220531
http://www.infoq.com/articles/governance-coding-standards
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-313
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-integration_watch-314
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-when_why_how-315
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-316
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-integration_watch-314
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-319
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-320
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-321

www.manaraa.com

1.	 "Descriptive	Information	(DI)	Metric	Thresholds".	Land	Software	Engineering	Centre.	http://www.lsec.dnd.ca/qsd_current_version/eng_support/di/metrics.htm
October	2010.

2.	 Binstock,	Andrew.	"Integration	Watch:	Using	metrics	effectively".	SD	Times.	BZ	Media.	http://www.sdtimes.com/link/34157
3.	 Kolawa,	Adam.	"When,	Why,	and	How:	Code	Analysis".	The	Code	Project.	http://www.codeproject.com/KB/interviews/Code_Review.aspx
4.	 Kaner,	Dr.	Cem,	Software	Engineer	Metrics:	What	do	they	measure	and	how	do	we	know?,	http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.2542&rep=rep1&type=pdf
5.	 ProjectCodeMeter	(2010)	"ProjectCodeMeter	Users	Manual"	page	65	[5]	(http://www.projectcodemeter.com/cost_estimation/images/files/PCMProManual.pdf)
6.	 Lincke,	Rüdiger;	Lundberg,	Jonas;	Löwe,	Welf	(2008),	"Comparing	software	metrics	tools",	International	Symposium	on	Software	Testing	and	Analysis	2008
http://www.arisa.se/files/LLL-08.pdf

7.	 DeMarco,	Tom.	Controlling	Software	Projects:	Management,	Measurement	and	Estimation.	ISBN	0-13-171711-1.
8.	 NASA	Metrics	Planning	and	Reporting	Working	Group	(MPARWG)	[6]	(https://esdswg.eosdis.nasa.gov/wg/mpar/index.html)
9.	 USC	Center	for	Systems	and	Software	Engineering	[7]	(http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html)

"Minimal	Essential	Software	Quality	Metrics"	(http://archive.is/20121216051506/qualinfra.blogspot.com/2010/02/metrics-measurements.html)
of	essential	metrics	for	a	successful	product	delivery.
Definitions	of	software	metrics	in	.NET	(http://www.ndepend.com/Metrics.aspx)
International	Function	Point	Users	Group	(http://www.ifpug.org)
What	is	FPA	(http://www.nesma.org/section/fpa/)	at	Nesma	website
Estimating	With	Use	Case	Points	(http://www.methodsandtools.com/archive/archive.php?id=25)	by	Mike	Cohn.	Describes	the	process	to	measure	the	size	of	an	application	modeled
with	UML,	using	use	cases.
OO	&	Agile	Metrics	Resources	(http://www.parlezuml.com/metrics/index.htm)	-	includes	workshop	material	on	gaming	metrics	to	improve	their	design
Further	defines	the	term	Software	Metrics	with	examples.	(http://www.sqa.net/softwarequalitymetrics.html)
Software	Engineering	Metrics:	What	do	they	measure	and	how	do	we	know	(http://www.kaner.com/pdfs/metrics2004.pdf)
metrics

This	article	describes	various	software	package	metrics.	They	have	been	mentioned	by	Robert	Cecil	Martin	in	his	
book	(2002).

The	term	software	package,	as	it	is	used	here,	refers	to	a	group	of	related	classes	(in	the	field	of	object-oriented	programming).

Number	of	Classes	and	Interfaces:	The	number	of	concrete	and	abstract	classes	(and	interfaces)	in	the	package	is	an	indicator	of	the	extensibility	of	the	package.
Afferent	Couplings	(Ca):	The	number	of	other	packages	that	depend	upon	classes	within	the	package	is	an	indicator	of	the	package's	responsibility.
Efferent	Couplings	(Ce):	The	number	of	other	packages	that	the	classes	in	the	package	depend	upon	is	an	indicator	of	the	package's	independence.
Abstractness	(A):	The	ratio	of	the	number	of	abstract	classes	(and	interfaces)	in	the	analyzed	package	to	the	total	number	of	classes	in	the	analyzed	package.	The	range	for	this
metric	is	0	to	1,	with	A=0	indicating	a	completely	concrete	package	and	A=1	indicating	a	completely	abstract	package.
Instability	(I):	The	ratio	of	efferent	coupling	(Ce)	to	total	coupling	(Ce	+	Ca)	such	that	I	=	Ce	/	(Ce	+	Ca).	This	metric	is	an	indicator	of	the	package's	resilience	to	change.	The
range	for	this	metric	is	0	to	1,	with	I=0	indicating	a	completely	stable	package	and	I=1	indicating	a	completely	instable	package.
Distance	from	the	Main	Sequence	(D):	The	perpendicular	distance	of	a	package	from	the	idealized	line	A	+	I	=	1.	This	metric	is	an	indicator	of	the	package's	balance
between	abstractness	and	stability.	A	package	squarely	on	the	main	sequence	is	optimally	balanced	with	respect	to	its	abstractness	and	stability.	Ideal	packages	are	either	completely
abstract	and	stable	(x=0,	y=1)	or	completely	concrete	and	instable	(x=1,	y=0).	The	range	for	this	metric	is	0	to	1,	with	D=0	indicating	a	package	that	is	coincident	with	the	main
sequence	and	D=1	indicating	a	package	that	is	as	far	from	the	main	sequence	as	possible.
Package	Dependency	Cycles:	Package	dependency	cycles	are	reported	along	with	the	hierarchical	paths	of	packages	participating	in	package	dependency	cycles.

Robert	Cecil	Martin	(2002).	Agile	Software	Development:	Principles,	Patterns	and	Practices.	Pearson	Education.	

OO	Metrics	(http://www.parlezuml.com/metrics/OO%20Design%20Principles%20&%20Metrics.pdf)	tutorial	explains	package	metrics	with	examples
JHawk	(http://www.virtualmachinery.com/jhawkprod.htm)	-	Java	Metrics	tool,	All	the	most	important	code	metrics.	Eclipse,	stand	alone	and	command	line	versions
Lattix	(http://www.lattix.com/products)	-	Architecture	tool	that	supports	a	variety	of	architecture	metrics	including	package	dependency	metrics.

References

External	links

Software	Package	Metrics

References

External	links

http://www.lsec.dnd.ca/qsd_current_version/eng_support/di/metrics.htm
http://www.lsec.dnd.ca/qsd_current_version/eng_support/di/metrics.htm
http://www.sdtimes.com/link/34157
http://www.sdtimes.com/link/34157
http://www.codeproject.com/KB/interviews/Code_Review.aspx
http://www.codeproject.com/KB/interviews/Code_Review.aspx
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.2542&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.2542&rep=rep1&type=pdf
http://www.projectcodemeter.com/cost_estimation/images/files/PCMProManual.pdf
http://www.arisa.se/files/LLL-08.pdf
http://www.arisa.se/files/LLL-08.pdf
https://en.wikipedia.org/wiki/Tom_DeMarco
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-13-171711-1
https://esdswg.eosdis.nasa.gov/wg/mpar/index.html
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html
http://archive.is/20121216051506/qualinfra.blogspot.com/2010/02/metrics-measurements.html
http://www.ndepend.com/Metrics.aspx
http://www.ifpug.org/
http://www.nesma.org/section/fpa/
http://www.methodsandtools.com/archive/archive.php?id=25
http://www.parlezuml.com/metrics/index.htm
http://www.sqa.net/softwarequalitymetrics.html
http://www.kaner.com/pdfs/metrics2004.pdf
http://www.parlezuml.com/metrics/OO%20Design%20Principles%20&%20Metrics.pdf
http://www.virtualmachinery.com/jhawkprod.htm
http://www.lattix.com/products

www.manaraa.com

NDepend	(http://www.ndepend.com/)	-	.NET	application	that	supports	the	package	dependency	metrics.
CppDepend	(http://www.cppdepend.com/)	-	C++	Metrics	tool	that	supports	all	the	most	important	code	metrics.
JDepend	(http://clarkware.com/software/JDepend.html)	-	Java	application	that	supports	the	package	dependency	metrics.
STAN	(http://www.stan4j.com/)	-	Structure	Analysis	for	Java.	Eclipse	integrated	and	standalone	visual	dependency	analysis,	quality	metrics	and	reporting.
SourceMonitor	(http://www.campwoodsw.com/sourcemonitor.html)	-	Something	for	C++,	C,	C#,	VB.NET,	Java,	Delphi,	Visual	Basic	(VB6)
PHP	Depend	(http://pdepend.org/)	-	PHP	version	of	JDepend	that	supports	the	package	dependency	metrics.

Software	 visualization[1]	 is	 the	 static	 or	 animated	 2-D	 or	 3-D[2]	 visual	 representation	 of	 information	 about	 software	 systems	 based	 on	 their	 structure,
behavior.[6]

Typically,	the	 information	used	for	visualization	 is	software	metric	data	from	measurement	activities	or	 from	reverse	engineering.	Visualization	 is	 inherently	not	a	method	for	software
quality	assurance	but	can	be	used	to	manually	discover	anomalies	similar	to	the	process	of	visual	data	mining.[7]

The	objectives	of	software	visualizations	are	to	support	the	understanding	of	software	systems	(i.e.,	its	structure)	and	algorithms	(e.g.,	by	animating	the	behavior	of	sorting	algorithms)	as
well	as	the	analysis	of	software	systems	and	their	anomalies	(e.g.,	by	showing	classes	with	high	coupling).

Tool	for	software	visualization	might	be	used	to	visualize	source	code	and	quality	defects	during	software	development	and	maintenance	activities.	Their	target	is	the	automatic	discovery
and	visualization	of	quality	defects	in	object-oriented	software	systems	and	services.	Designed	as	a	plugin	for	an	IDE	(e.g.,	Visual	Studio,	Eclipse)	they	visualized	the	direct	relationship	of
a	class	and	its	methods	with	other	classes	in	the	software	system	and	mark	potential	quality	defects	to	warn	the	developer.	A	further	benefit	is	the	support	for	visual	navigation	through
the	software	system.

Other	more	powerful	tools	are	used	to	visualize	a	whole	system	or	subsystem	to	explore	the	architecture	or	to	apply	visual	data	mining	or	visual	analytics	techniques	for	defect	discovery.

1.	 (Diehl,	2002;	Diehl,	2007;	Knight,	2002)
2.	 (Marcus	et	al.,	2003;	Wettel	et	al.,	2007)
3.	 (Staples	&	Bieman,	1999)
4.	 (Lanza,	2004)
5.	 (Girba	et	al.,	2005,	Lopez	et	al.,	2004;	Van	Rysselberghe	et	al.,	2004)
6.	 (Kuhn	et	al.,	2006,	Stasko	et	al.,	1997)
7.	 (Keim,	2002;	Soukup,	2002).

Diehl,	S.	(2002).	Software	Visualization.	International	Seminar.	Revised	Papers	(LNCS	Vol.	2269),	Dagstuhl	Castle,	Germany,	20-25	May	2001	(Dagstuhl	Seminar	Proceedings).
Diehl,	S.	(2007).	Software	Visualization	—	Visualizing	the	Structure,	Behaviour,	and	Evolution	of	Software.	Springer,	2007,	
Gîrba,	T.,	Kuhn,	A.,	Seeberger,	M.,	and	Ducasse,	S.,	“How	Developers	Drive	Software	Evolution,”	Proceedings	of	International	Workshop	on	Principles	of	Software	Evolution	(IWPSE
2005),	IEEE	Computer	Society	Press,	2005,	pp.	113–122.	PDF	(http://www.iam.unibe.ch/~scg/Archive/Papers/Girb05cOwnershipMap.pdf)
Keim,	D.	A.	(2002).	Information	visualization	and	visual	data	mining.	IEEE	Transactions	on	Visualization	and	Computer	Graphics,	USA	*	vol	8	(Jan.	March	2002),	no	1,	p	1	8,	67
refs.
Knight,	C.	(2002).	System	and	Software	Visualization.	In	Handbook	of	software	engineering	&	knowledge	engineering
Publishing	Company.
Kuhn,	A.,	and	Greevy,	O.,	“Exploiting	the	Analogy	Between	Traces	and	Signal	Processing,”	Proceedings	IEEE	International	Conference	on	Software	Maintenance	(ICSM	2006),	IEEE
Computer	Society	Press,	Los	Alamitos	CA,	September	2006.	PDF	(http://www.iam.unibe.ch/~scg/Archive/Papers/Kuhn06cTraceSignalICSM2006.pdf)
Lanza,	M.	(2004).	CodeCrawler	—	polymetric	views	in	action.	Proceedings.	19th	International	Conference	on	Automated	Software	Engineering,	Linz,	Austria,	20	24	Sept.	2004	*	Los
Alamitos,	CA,	USA:	IEEE	Comput.	Soc,	2004,	p	394	5.
Lopez,	F.	L.,	Robles,	G.,	&	Gonzalez,	B.	J.	M.	(2004).	Applying	social	network	analysis	to	the	information	in	CVS	repositories
Repositories	(MSR	2004)"	W17S	Workshop	26th	International	Conference	on	Software	Engineering,	Edinburgh,	Scotland,	UK,	25	May	2004	*	Stevenage,	UK:	IEE,	2004,	p	101	5.
Marcus,	A.,	Feng,	L.,	&	Maletic,	J.	I.	(2003).	3D	representations	for	software	visualization.	Paper	presented	at	the	Proceedings	of	the	2003	ACM	symposium	on	Software	visualization,
San	Diego,	California.
Soukup,	T.	(2002).	Visual	data	mining	:	techniques	and	tools	for	data	visualization	and	mining.	New	York:	Chichester.
Staples,	M.	L.,	&	Bieman,	J.	M.	(1999).	3-D	Visualization	of	Software	Structure.	In	Advances	in	Computers	(Vol.	49,	pp.	96–143):	Academic	Press,	London.

Visualization

Types

Single	component

Whole	(sub-)systems

References

Further	reading

http://www.ndepend.com/
http://www.cppdepend.com/
http://clarkware.com/software/JDepend.html
http://www.stan4j.com/
http://www.campwoodsw.com/sourcemonitor.html
http://pdepend.org/
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-322
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-323
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-327
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-328
http://www.iam.unibe.ch/~scg/Archive/Papers/Girb05cOwnershipMap.pdf
http://www.iam.unibe.ch/~scg/Archive/Papers/Kuhn06cTraceSignalICSM2006.pdf

www.manaraa.com

Stasko,	J.	T.,	Brown,	M.	H.,	&	Price,	B.	A.	(1997).	Software	Visualization:	MIT	Press.
Van	Rysselberghe,	F.	(2004).	Studying	Software	Evolution	Information	By	Visualizing	the	Change	History.	Proceedings.	20th	International	Conference	On	Software	Maintenance.	pp
328–337,	IEEE	Computer	Society	Press,	2004
Wettel,	R.,	and	Lanza,	M.,	Visualizing	Software	Systems	as	Cities.	In	Proceedings	of	VISSOFT	2007	(4th	IEEE	International	Workshop	on	Visualizing	Software	For	Understanding
and	Analysis),	pp.	92	–	99,	IEEE	Computer	Society	Press,	2007.

EPDV	(http://code.google.com/p/epdv/)	Eclipse	Project	Dependencies	Viewer
SoftVis	(http://www.softvis.org)	is	the	second	meeting	in	a	planned	series	of	biennial	conferences.
The	Program	Visualization	Workshops	(http://www.algoanim.net/pvw2006/)	aim	to	bring	together	researchers	who	design	and	construct	program,	algorithm,	or	data	structure
visualizations	or	animations	as	well	as	educators	who	use	or	evaluate	visualization	or	animations	in	their	teaching.
CppDepend	(http://www.cppdepend.com/)	-	useful	C++	tool	to	visualize	dependencies.

Code	review	is	systematic	examination	(often	as	peer	review)	of	computer	source	code.	It	is	intended	to	find	and	fix	mistakes	overlooked	in	the	initial	development	phase,	improving
both	the	overall	quality	of	software	and	the	developers'	skills.	Reviews	are	done	in	various	forms	such	as	pair	programming,	informal	walkthroughs,	and	formal	inspections.

Code	reviews	can	often	find	and	remove	common	vulnerabilities	such	as	format	string	exploits,	race	conditions,	memory	leaks	and	buffer	overflows,	thereby	improving	software	security.
Online	software	repositories	based	on	Subversion	(with	Redmine	or	Trac),	Mercurial,	Git	or	others	allow	groups	of	individuals	to	collaboratively	review	code.	Additionally,	specific	tools	for
collaborative	code	review	can	facilitate	the	code	review	process.

Automated	code	reviewing	software	lessens	the	task	of	reviewing	large	chunks	of	code	on	the	developer	by	systematically	checking	source	code	for	known	vulnerabilities.

Capers	 Jones'	 ongoing	 analysis	 of	 over	 12,000	 software	 development	 projects	 showed	 that	 the	 latent	 defect	 discovery	 rate	 of	 formal	 inspection	 is	 in	 the	 60-65%	 range.	 For	 informal
inspection,	the	figure	is	less	than	50%.[citation	needed]	The	latent	defect	discovery	rate	for	most	forms	of	testing	is	about	30%.	

Typical	 code	 review	 rates	are	about	150	 lines	of	 code	per	hour.	 Inspecting	and	 reviewing	more	 than	a	 few	hundred	 lines	of	 code	per	hour	 for	 critical	 software	 (such	as	 safety	 critical
embedded	software)	may	be	too	fast	to	find	errors.	[3]	Industry	data	indicate	that	code	review	can	accomplish	at	most	an	85%	defect	removal	rate	with	an	average	rate	of	about	65%.	

Code	review	practices	fall	into	three	main	categories:	pair	programming,	formal	code	review	and	lightweight	code	review.

Formal	code	review,	such	as	a	Fagan	inspection,	involves	a	careful	and	detailed	process	with	multiple	participants	and	multiple	phases.	Formal	code	reviews	are	the	traditional	method	of
review,	in	which	software	developers	attend	a	series	of	meetings	and	review	code	line	by	line,	usually	using	printed	copies	of	the	material.	Formal	inspections	are	extremely	thorough	and
have	been	proven	effective	at	finding	defects	in	the	code	under	review.

Lightweight	code	review	typically	requires	less	overhead	than	formal	code	inspections,	though	it	can	be	equally	effective	when	done	properly.
conducted	as	part	of	the	normal	development	process:

Over-the-shoulder	–	One	developer	looks	over	the	author's	shoulder	as	the	latter	walks	through	the	code.
Email	pass-around	–	Source	code	management	system	emails	code	to	reviewers	automatically	after	checkin	is	made.
Pair	Programming	–	Two	authors	develop	code	together	at	the	same	workstation,	such	is	common	in	Extreme	Programming
Tool-assisted	code	review	–	Authors	and	reviewers	use	specialized	tools	designed	for	peer	code	review.

Some	of	these	may	also	be	labeled	a	"Walkthrough"	(informal)	or	"Critique"	(fast	and	informal).

Many	teams	that	eschew	traditional,	formal	code	review	use	one	of	the	above	forms	of	lightweight	review	as	part	of	their	normal	development	process.	A	code	review	case	study	published
in	the	book	Best	Kept	Secrets	of	Peer	Code	Review	found	that	lightweight	reviews	uncovered	as	many	bugs	as	formal	reviews,	but	were	faster	and	more	cost-effective.

Historically,	formal	code	reviews	have	required	a	considerable	investment	in	preparation	for	the	review	event	and	execution	time.

Some	believe	that	skillful,	disciplined	use	of	a	number	of	other	development	practices	can	result	in	similarly	high	latent	defect	discovery/avoidance	rates.	Further,	XP	proponents	might
argue,	 layering	 additional	XP	practices,	 such	 as	 refactoring	 and	 test-driven	 development	will	 result	 in	 latent	 defect	 levels	 rivaling	 those	 achievable	with	more	 traditional	 approaches,
without	the	investment.[citation	needed]

Use	of	code	analysis	tools	can	support	this	activity.	Especially	tools	that	work	in	the	IDE	as	they	provide	direct	feedback	to	developers	of	coding	standard	compliance.

1.	 Kolawa,	Adam;	Huizinga,	Dorota	(2007).	Automated	Defect	Prevention:	Best	Practices	in	Software	Management
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html.

2.	 Jones,	Capers;	Christof,	Ebert	(April	2009).	"Embedded	Software:	Facts,	Figures,	and	Future".	IEEE	Computer	Society
Retrieved	2010-10-05.

External	links

Code	Review

Introduction

Types

Criticism

References

http://code.google.com/p/epdv/
http://www.softvis.org/
http://www.algoanim.net/pvw2006/
http://www.cppdepend.com/
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-331
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Process/Extreme_Programming
https://en.wikibooks.org/wiki/Wikibooks:OR
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://doi.ieeecomputersociety.org/10.1109/MC.2009.118

www.manaraa.com

3.	 Ganssle,	Jack	(February	2010).	"A	Guide	to	Code	Inspections".	The	Ganssle	Group.	http://www.ganssle.com/inspections.pdf
4.	 Jones,	Capers	(June	2008).	"Measuring	Defect	Potentials	and	Defect	Removal	Efficiency".	Crosstalk,	The	Journal	of	Defense	Software	Engineering
http://www.stsc.hill.af.mil/crosstalk/2008/06/0806jones.html.	Retrieved	2010-10-05.

Jason	Cohen	(2006).	Best	Kept	Secrets	of	Peer	Code	Review	(Modern	Approach.	Practical	Advice.).	Smartbearsoftware.com.	

Security	Code	Review	FAQs	(http://www.ouncelabs.com/resources/code-review-faq.asp)
Security	code	review	guidelines	(http://www.homeport.org/~adam/review.html)
Lightweight	Tool	Support	for	Effective	Code	Reviews	(http://web.archive.org/web/20080720093900/http://www.atlassian.com/software/crucible/learn/codereviewwhitepaper.pdf)
white	paper
Code	Review	Best	Practices	(http://www.parasoft.com/jsp/printables/When_Why_How_Code_Review.pdf?path=/jsp/products/article.jsp)
Best	Practices	for	Peer	Code	Review	(http://web.archive.org/web/20070929033247/http://smartbear.com/docs/BestPracticesForPeerCodeReview.pdf)
Code	review	case	study	(http://web.archive.org/web/20070328001806/http://smartbearsoftware.com/docs/book/code-review-cisco-case-study.pdf)
"A	Guide	to	Code	Inspections"	(Jack	G.	Ganssle)	(http://www.ganssle.com/inspections.pdf)
Article	Four	Ways	to	a	Practical	Code	Review	(http://www.methodsandtools.com/archive/archive.php?id=66)

Inspection	 in	 software	 engineering,	 refers	 to	peer	 review	of	 any	work	product	by	 trained	 individuals	who	 look	 for	defects	using	a	well	defined	process.	An	 inspection	might	also	be
referred	to	as	a	Fagan	inspection	after	Michael	Fagan,	the	creator	of	a	very	popular	software	inspection	process.

An	inspection	is	one	of	the	most	common	sorts	of	review	practices	found	in	software	projects.	The	goal	of	the	inspection	is	for	all	of	the	inspectors	to	reach	consensus	on	a	work	product
and	approve	it	for	use	in	the	project.	Commonly	inspected	work	products	include	software	requirements	specifications	and	test	plans.	In	an	inspection,	a	work	product	is	selected	for	review
and	a	team	is	gathered	for	an	inspection	meeting	to	review	the	work	product.	A	moderator	is	chosen	to	moderate	the	meeting.	Each	inspector	prepares	for	the	meeting	by	reading	the	work
product	and	noting	each	defect.	The	goal	of	the	inspection	is	to	identify	defects.	In	an	inspection,	a	defect	is	any	part	of	the	work	product	that	will	keep	an	inspector	from
approving	it.	For	example,	if	the	team	is	inspecting	a	software	requirements	specification,	each	defect	will	be	text	in	the	document	which	an	inspector	disagrees	with.

The	inspection	process	was	developed	by	Michael	Fagan	in	the	mid-1970s	and	it	has	later	been	extended	and	modified.

The	process	should	have	entry	criteria	that	determine	if	the	inspection	process	is	ready	to	begin.	This	prevents	unfinished	work	products	from	entering	the	inspection	process.	The	entry
criteria	might	be	a	checklist	including	items	such	as	"The	document	has	been	spell-checked".

The	stages	in	the	inspections	process	are:	Planning,	Overview	meeting,	Preparation,	Inspection	meeting,	Rework	and	Follow-up.	The	Preparation,	Inspection	meeting	and	Rework	stages
might	be	iterated.

Planning:	The	inspection	is	planned	by	the	moderator.
Overview	meeting:	The	author	describes	the	background	of	the	work	product.
Preparation:	Each	inspector	examines	the	work	product	to	identify	possible	defects.
Inspection	meeting:	During	this	meeting	the	reader	reads	through	the	work	product,	part	by	part	and	the	inspectors	point	out	the	defects	for	every	part.
Rework:	The	author	makes	changes	to	the	work	product	according	to	the	action	plans	from	the	inspection	meeting.
Follow-up:	The	changes	by	the	author	are	checked	to	make	sure	everything	is	correct.

The	process	is	ended	by	the	moderator	when	it	satisfies	some	predefined	exit	criteria.

During	an	inspection	the	following	roles	are	used.

Author:	The	person	who	created	the	work	product	being	inspected.
Moderator:	This	is	the	leader	of	the	inspection.	The	moderator	plans	the	inspection	and	coordinates	it.
Reader:	The	person	reading	through	the	documents,	one	item	at	a	time.	The	other	inspectors	then	point	out	defects.
Recorder/Scribe:	The	person	that	documents	the	defects	that	are	found	during	the	inspection.
Inspector:	The	person	that	examines	the	work	product	to	identify	possible	defects.

A	code	review	can	be	done	as	a	special	kind	of	inspection	in	which	the	team	examines	a	sample	of	code	and	fixes	any	defects	in	it.	In	a	code	review,	a	defect	is	a	block	of	code	which	does
not	properly	 implement	 its	 requirements,	which	does	not	 function	as	 the	programmer	 intended,	or	which	 is	not	 incorrect	but	could	be	 improved	 (for	 example,	 it	 could	be	made	more
readable	or	its	performance	could	be	improved).	In	addition	to	helping	teams	find	and	fix	bugs,	code	reviews	are	useful	for	both	cross-training	programmers	on	the	code	being	reviewed	and

External	links

Code	Inspection

Introduction

The	process

Inspection	roles

Related	inspection	types

Code	review

http://www.ganssle.com/inspections.pdf
http://www.ganssle.com/inspections.pdf
http://www.stsc.hill.af.mil/crosstalk/2008/06/0806jones.html
http://www.stsc.hill.af.mil/crosstalk/2008/06/0806jones.html
http://www.ouncelabs.com/resources/code-review-faq.asp
http://www.homeport.org/~adam/review.html
http://web.archive.org/web/20080720093900/http://www.atlassian.com/software/crucible/learn/codereviewwhitepaper.pdf
http://www.parasoft.com/jsp/printables/When_Why_How_Code_Review.pdf?path=/jsp/products/article.jsp
http://web.archive.org/web/20070929033247/http://smartbear.com/docs/BestPracticesForPeerCodeReview.pdf
http://web.archive.org/web/20070328001806/http://smartbearsoftware.com/docs/book/code-review-cisco-case-study.pdf
http://www.ganssle.com/inspections.pdf
http://www.methodsandtools.com/archive/archive.php?id=66

www.manaraa.com

for	helping	junior	developers	learn	new	programming	techniques.

Peer	Reviews	are	considered	an	industry	best-practice	for	detecting	software	defects	early	and	learning	about	software	artifacts.	Peer	Reviews	are	composed	of	software	walkthroughs	and
software	inspections	and	are	integral	to	software	product	engineering	activities.	A	collection	of	coordinated	knowledge,	skills,	and	behaviors	facilitates	the	best	possible	practice	of	Peer
Reviews.	The	elements	of	Peer	Reviews	include	the	structured	review	process,	standard	of	excellence	product	checklists,	defined	roles	of	participants,	and	the	forms	and	reports.

Software	inspections	are	the	most	rigorous	form	of	Peer	Reviews	and	fully	utilize	these	elements	in	detecting	defects.	Software	walkthroughs	draw	selectively	upon	the	elements	in	assisting
the	producer	to	obtain	the	deepest	understanding	of	an	artifact	and	reaching	a	consensus	among	participants.	Measured	results	reveal	that	Peer	Reviews	produce	an	attractive	return	on
investment	obtained	through	accelerated	learning	and	early	defect	detection.	For	best	results,	Peer	Reviews	are	rolled	out	within	an	organization	through	a	defined	program	of	preparing	a
policy	and	procedure,	training	practitioners	and	managers,	defining	measurements	and	populating	a	database	structure,	and	sustaining	the	roll	out	infrastructure.

Review	and	inspection	practices	(http://www.stellman-greene.com/reviews)
Article	Software	Inspections	(http://www.methodsandtools.com/archive/archive.php?id=29)	by	Ron	Radice
Comparison	of	different	inspection	and	review	techniques	(http://www.the-software-experts.de/e_dta-sw-test-inspection.htm)

Deployment	&	Maintenance

Software	deployment	is	all	of	the	activities	that	make	a	software	system	available	for	use.

The	general	deployment	process	consists	of	several	interrelated	activities	with	possible	transitions	between	them.	These	activities	can	occur	at	the	producer	site	or	at	the	consumer	site	or
both.	Because	every	software	system	is	unique,	the	precise	processes	or	procedures	within	each	activity	can	hardly	be	defined.	Therefore,	"deployment"	should	be	interpreted	as	a	
process	that	has	to	be	customized	according	to	specific	requirements	or	characteristics.	A	brief	description	of	each	activity	will	be	presented	later.

Release
The	release	activity	follows	from	the	completed	development	process.	It	includes	all	the	operations	to	prepare	a	system	for	assembly	and	transfer	to	the	customer	site.	Therefore,	it
must	determine	the	resources	required	to	operate	at	the	customer	site	and	collect	information	for	carrying	out	subsequent	activities	of	deployment	process.

Install	and	activate
Activation	is	the	activity	of	starting	up	the	executable	component	of	software.	For	simple	system,	it	involves	establishing	some	form	of	command	for	execution.	For	complex	systems,	it
should	make	all	the	supporting	systems	ready	to	use.
In	larger	software	deployments,	the	working	copy	of	the	software	might	be	installed	on	a	production	server	in	a	production	environment.	Other	versions	of	the	deployed	software	may
be	installed	in	a	test	environment,	development	environment	and	disaster	recovery	environment.

Deactivate
Deactivation	is	the	inverse	of	activation,	and	refers	to	shutting	down	any	executing	components	of	a	system.	Deactivation	is	often	required	to	perform	other	deployment	activities,	e.g.,
a	software	system	may	need	to	be	deactivated	before	an	update	can	be	performed.	The	practice	of	removing	infrequently	used	or	obsolete	systems	from	service	is	often	referred	to	as
application	retirement	or	application	decommissioning.

Adapt
The	adaptation	activity	is	also	a	process	to	modify	a	software	system	that	has	been	previously	installed.	It	differs	from	updating	in	that	adaptations	are	initiated	by	local	events	such
as	changing	the	environment	of	customer	site,	while	updating	is	mostly	started	from	remote	software	producer.

Update
The	update	process	replaces	an	earlier	version	of	all	or	part	of	a	software	system	with	a	newer	release.

Built-In
Mechanisms	for	installing	updates	are	built	into	some	software	systems.	Automation	of	these	update	processes	ranges	from	fully	automatic	to	user	initiated	and	controlled.	Norton
Internet	Security	is	an	example	of	a	system	with	a	semi-automatic	method	for	retrieving	and	installing	updates	to	both	the	antivirus	definitions	and	other	components	of	the	system.
Other	software	products	provide	query	mechanisms	for	determining	when	updates	are	available.

Version	tracking
Version	tracking	systems	help	the	user	find	and	install	updates	to	software	systems	installed	on	PCs	and	local	networks.

Web	based	version	tracking	systems	notify	the	user	when	updates	are	available	for	software	systems	installed	on	a	local	system.	For	example:	VersionTracker	Pro	checks	software
versions	on	a	user's	computer	and	then	queries	its	database	to	see	if	any	updates	are	available.
Local	version	tracking	system	notifies	the	user	when	updates	are	available	for	software	systems	installed	on	a	local	system.	For	example:	Software	Catalog	stores	version	and	other
information	for	each	software	package	installed	on	a	local	system.	One	click	of	a	button	launches	a	browser	window	to	the	upgrade	web	page	for	the	application,	including	auto-
filling	of	the	user	name	and	password	for	sites	that	require	a	login.
Browser	based	version	tracking	systems	notify	the	user	when	updates	are	available	for	software	packages	installed	on	a	local	system.	For	example:	wfx-Versions	is	a	Firefox
extension	which	helps	the	user	find	the	current	version	number	of	any	program	listed	on	the	web.

Peer	Reviews

External	links

Introduction

Deployment	activities

http://www.stellman-greene.com/reviews
http://www.methodsandtools.com/archive/archive.php?id=29
http://www.the-software-experts.de/e_dta-sw-test-inspection.htm

www.manaraa.com

Uninstall
Uninstallation	is	the	inverse	of	installation.	It	is	the	removal	of	a	system	that	is	no	longer	required.	It	also	involves	some	reconfiguration	of	other	software	systems	in	order	to	remove
the	uninstalled	system’s	files	and	dependencies.

Retire
Ultimately,	a	software	system	is	marked	as	obsolete	and	support	by	the	producers	is	withdrawn.	It	is	the	end	of	the	life	cycle	of	a	software	product.

The	complexity	and	variability	of	software	products	has	necessitated	the	creation	of	specialized	roles	for	coordinating	and	engineering	the	deployment	process.	For	desktop	systems,	an	end
user	is	frequently	also	the	"software	deployer"	when	they	install	the	software	package	on	their	machine.	For	enterprise	software,	there	are	many	more	roles	involved.	Additionally,	the	roles
involved	 typically	 change	 as	 the	 application	 progresses	 from	 test	 (pre-production)	 to	 production	 environments.	 The	 typical	 roles	 involved	 in	 software	 deployments	 for	 enterprise
applications	are:

Pre-production	environments

Application	developers:	see	Software	development	process
Build	and	release	engineers:	see	Release	engineering
Release	managers:	see	Release	management
Deployment	coordinators:	see	DevOps

Production	environments

System	administrator
Database	administrator
Release	coordinators:	see	DevOps
Operations	project	managers:	see	Information	Technology	Infrastructure	Library

FAI	OpenSource	Software	Linux
M23	OpenSource	Software	Linux
Open	PC	Server	Integration	(opsi)	OpenSource	Software	Windows
RPM	with	YUM	OpenSource	Software	Linux
MS	SCCM	Microsoft	Windows
HP	OpenView	(Hewlett-Packard)
Tivoli	Provisioning	Manager	and	IBM	Tivoli	Intelligent	Orchestrator
DX-Union	(Materna)
Novell	ZENworks	(Novell)	Zero	Effort	Networks
Garibaldi	(Software)	(INOSOFT	AG)
Client	Management	Suite	(Baramundi	Software	AG,	Augsburg)
Blackberry	MDS	Suite	Research	In	Motion	(RIM)
Intellisync	Mobile	Suite	Nokia
Mobile	Device	Manager	2008	Microsoft
ubi-Suite	ubitexx
Java	Web	Start

Standardization	efforts

Solution	Installation	Schema	Submission	request	to	W3C	(http://www.w3.org/Submission/2004/04/)
OASIS	Solution	Deployment	Descriptor	TC	(http://www.oasis-open.org/committees/sdd/charter.php)
OMG	Specification	for	Deployment	and	Configuration	of	Component-based	Distributed	Applications	(http://www.omg.org/docs/mars/03-05-08.pdf)
JSR	88:	Java	EE	Application	Deployment	(http://jcp.org/en/jsr/detail?id=88)

Articles

The	Future	of	Software	Delivery	(https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?lang=en_US&source=swg-tfosd&S_TACT=105AGY59&S_CMP=WIKIWP&c

Deployment	roles

Examples

References

External	links

http://www.w3.org/Submission/2004/04/
http://www.oasis-open.org/committees/sdd/charter.php
http://www.omg.org/docs/mars/03-05-08.pdf
http://jcp.org/en/jsr/detail?id=88
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?lang=en_US&source=swg-tfosd&S_TACT=105AGY59&S_CMP=WIKIWP&ca=dtl-2108wp5

www.manaraa.com

a=dtl-2108wp5)	-	free	developerWorks	whitepaper
Carzaniga	A.,	Fuggetta	A.,	Hall	R.	S.,	Van	Der	Hoek	A.,	Heimbigner	D.,	Wolf	A.	L.	—	A	Characterization	Framework	for	Software	Deployment	Technologies	—	Technical	Report
CU-CS-857-98,	Dept.	of	Computer	Science,	University	of	Colorado,	April	1998.	http://serl.cs.colorado.edu/~carzanig/papers/CU-CS-857-98.pdf

Resources

Microsoft's	resource	page	on	Client	Deployment	(http://technet.microsoft.com/en-us/windows/default.aspx)

Software	maintenance	in	software	engineering	is	the	modification	of	a	software	product	after	delivery	to	correct	faults,	to	improve	performance	or	other	attributes.

A	common	perception	of	maintenance	is	that	it	is	merely	fixing	bugs.	However,	studies	and	surveys	over	the	years	have	indicated	that	the	majority,	over	80%,	of	the	maintenance	effort	is
used	for	non-corrective	actions	(Pigosky	1997).	This	perception	is	perpetuated	by	users	submitting	problem	reports	that	in	reality	are	functionality	enhancements	to	the	system.

Software	maintenance	and	 evolution	of	 systems	was	 first	 addressed	by	Meir	M.	Lehman	 in	1969.	Over	 a	period	of	 twenty	years,	his	 research	 led	 to	 the	 formulation	of	 eight	Laws	of
Evolution	(Lehman	1997).	Key	 findings	of	his	 research	 include	that	maintenance	 is	 really	evolutionary	developments	and	that	maintenance	decisions	are	aided	by	understanding	what
happens	to	systems	(and	software)	over	time.	Lehman	demonstrated	that	systems	continue	to	evolve	over	time.	As	they	evolve,	they	grow	more	complex	unless	some	action	such	as	code
refactoring	is	taken	to	reduce	the	complexity.

The	key	software	maintenance	issues	are	both	managerial	and	technical.	Key	management	issues	are:	alignment	with	customer	priorities,	staffing,	which	organization	does	maintenance,
estimating	costs.	Key	technical	issues	are:	limited	understanding,	impact	analysis,	testing,	maintainability	measurement.

This	section	describes	the	six	software	maintenance	processes	as:

1.	 The	implementation	processes	contains	software	preparation	and	transition	activities,	such	as	the	conception	and	creation	of	the	maintenance	plan,	the	preparation	for	handling
problems	identified	during	development,	and	the	follow-up	on	product	configuration	management.

2.	 The	problem	and	modification	analysis	process,	which	is	executed	once	the	application	has	become	the	responsibility	of	the	maintenance	group.	The	maintenance	programmer	must
analyze	each	request,	confirm	it	(by	reproducing	the	situation)	and	check	its	validity,	investigate	it	and	propose	a	solution,	document	the	request	and	the	solution	proposal,	and,
finally,	obtain	all	the	required	authorizations	to	apply	the	modifications.

3.	 The	process	considering	the	implementation	of	the	modification	itself.
4.	 The	process	acceptance	of	the	modification,	by	confirming	the	modified	work	with	the	individual	who	submitted	the	request	in	order	to	make	sure	the	modification	provided	a	solution.
5.	 The	migration	process	(platform	migration,	for	example)	is	exceptional,	and	is	not	part	of	daily	maintenance	tasks.	If	the	software	must	be	ported	to	another	platform	without	any
change	in	functionality,	this	process	will	be	used	and	a	maintenance	project	team	is	likely	to	be	assigned	to	this	task.

6.	 Finally,	the	last	maintenance	process,	also	an	event	which	does	not	occur	on	a	daily	basis,	is	the	retirement	of	a	piece	of	software.
There	are	a	number	of	processes,	activities	and	practices	that	are	unique	to	maintainers,	for	example:

Transition:	a	controlled	and	coordinated	sequence	of	activities	during	which	a	system	is	transferred	progressively	from	the	developer	to	the	maintainer;
Service	Level	Agreements	(SLAs)	and	specialized	(domain-specific)	maintenance	contracts	negotiated	by	maintainers;
Modification	Request	and	Problem	Report	Help	Desk:	a	problem-handling	process	used	by	maintainers	to	prioritize,	documents	and	route	the	requests	they	receive;
Modification	Request	acceptance/rejection:	modification	request	work	over	a	certain	size/effort/complexity	may	be	rejected	by	maintainers	and	rerouted	to	a	developer.

E.B.	Swanson	(http://www.anderson.ucla.edu/x1960.xml)	initially	identified	three	categories	of	maintenance:	corrective,	adaptive,	and	perfective	
ISO/IEC	14764	presents:

Corrective	maintenance:	Reactive	modification	of	a	software	product	performed	after	delivery	to	correct	discovered	problems.
Adaptive	maintenance:	Modification	of	a	software	product	performed	after	delivery	to	keep	a	software	product	usable	in	a	changed	or	changing	environment.
Perfective	maintenance:	Modification	of	a	software	product	after	delivery	to	improve	performance	or	maintainability.
Preventive	maintenance:	Modification	of	a	software	product	after	delivery	to	detect	and	correct	latent	faults	in	the	software	product	before	they	become	effective	faults.

There	is	also	a	notion	of	pre-delivery/pre-release	maintenance	which	is	all	the	good	things	you	do	to	lower	the	total	cost	of	ownership	of	the	software.	Things	like	compliance	with	coding
standards	that	includes	software	maintainability	goals.	The	management	of	coupling	and	cohesion	of	the	software.	The	attainment	of	software	supportability	goals	(SAE	JA1004,	JA1005
and	JA1006	for	example).	Note	also	that	some	academic	institutions	are	carrying	out	research	to	quantify	the	cost	to	ongoing	software	maintenance	due	to	the	lack	of	resources	such	as
design	documents	and	system/software	comprehension	training	and	resources	(multiply	costs	by	approx.	1.5-2.0	where	there	is	no	design	data	available.).

1.	 ISO/IEC	14764:2006	Software	Engineering	—	Software	Life	Cycle	Processes	—	Maintenance	(http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=390
64)

2.	 E.	Burt	Swanson,	The	dimensions	of	maintenance.	Proceedings	of	the	2nd	international	conference	on	Software	engineering,	San	Francisco,	1976,	pp	492	—	497
citation.cfm?id=359522)

Maintenance

Software	maintenance	processes

Categories	of	maintenance	in	ISO/IEC	14764

References

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?lang=en_US&source=swg-tfosd&S_TACT=105AGY59&S_CMP=WIKIWP&ca=dtl-2108wp5
http://serl.cs.colorado.edu/~carzanig/papers/CU-CS-857-98.pdf
http://technet.microsoft.com/en-us/windows/default.aspx
http://www.anderson.ucla.edu/x1960.xml
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39064
http://portal.acm.org/citation.cfm?id=359522

www.manaraa.com

April,	Alain;	Abran,	Alain	(2008).	Software	Maintenance	Management.	New	York:	Wiley-IEEE.	ISBN	978-0470-14707-8
Gopalaswamy	Ramesh;	Ramesh	Bhattiprolu	(2006).	Software	maintenance	:	effective	practices	for	geographically	distributed	environments
ISBN	9780070483453.
Grubb,	Penny;	Takang,	Armstrong	(2003).	Software	Maintenance.	New	Jersey:	World	Scientific	Publishing.	ISBN
Lehman,	M.M.;	Belady,	L.A.	(1985).	Program	evolution	:	processes	of	software	change.	London:	Academic	Press	Inc.	
Page-Jones,	Meilir	(1980).	The	Practical	Guide	to	Structured	Systems	Design.	New	York:	Yourdon	Press.	ISBN	

[12]	(http://www.software-continuity.com)	Software	Continuity	:	a	rating	methodology	for	software	sustainability.
Journal	of	Software	Maintenance	(http://www3.interscience.wiley.com/cgi-bin/jhome/5391/)
Software	Maintenance	Maturity	Model	(http://www.s3m.ca)

Software	evolution	is	the	term	used	in	software	engineering	(specifically	software	maintenance)	to	refer	to	the	process	of	developing	software	initially,	then	repeatedly	updating	it	for
various	reasons.

Fred	Brooks,	in	his	key	book	The	Mythical	Man-Month,[1]	states	that	over	90%	of	the	costs	of	a	typical	system	arise	in	the	maintenance	phase,	and	that	any	successful	piece	of	software
will	inevitably	be	maintained.

In	fact,	Agile	methods	stem	from	maintenance	like	activities	in	and	around	web	based	technologies,	where	the	bulk	of	the	capability	comes	from	frameworks	and	standards.

Software	maintenance	address	bug	fixes	and	minor	enhancements	and	software	evolution	focus	on	adaptation	and	migration.

E.B.	Swanson	initially	identified	three	categories	of	maintenance:	corrective,	adaptive,	and	perfective.	Four	categories	of	software	were	then	catalogued	by	Lientz	and	Swanson	(1980)	
These	have	since	been	updated	and	normalized	internationally	in	the	ISO/IEC	14764:2006:[3]

Corrective	maintenance:	Reactive	modification	of	a	software	product	performed	after	delivery	to	correct	discovered	problems;
Adaptive	maintenance:	Modification	of	a	software	product	performed	after	delivery	to	keep	a	software	product	usable	in	a	changed	or	changing	environment;
Perfective	maintenance:	Modification	of	a	software	product	after	delivery	to	improve	performance	or	maintainability;
Preventive	maintenance:	Modification	of	a	software	product	after	delivery	to	detect	and	correct	latent	faults	in	the	software	product	before	they	become	effective	faults.

All	of	the	preceding	take	place	when	there	is	a	known	requirement	for	change.

Although	 these	 categories	 were	 supplemented	 by	many	 authors	 like	Warren	 et	 al.	 (1999)[citation	 needed]	 and	 Chapin	 (2001)
standard	has	kept	the	basic	four	categories.

More	recently	the	description	of	software	maintenance	and	evolution	has	been	done	using	ontologies	(Kitchemham	et	al.	(1999),
2003,[citation	needed]	Dias	(2003),[citation	needed]	and	Ruiz	(2004)),[citation	needed]	which	enrich	the	description	of	the	many	evolution	activities.

Prof.	Meir	M.	Lehman,	who	worked	at	Imperial	College	London	from	1972	to	2002,	and	his	colleagues	have	identified	a	set	of	behaviours	in	the	evolution	of	proprietary	software.	These
behaviours	(or	observations)	are	known	as	Lehman's	Laws,	and	there	are	eight	of	them:

1.	 Continuing	Change
2.	 Increasing	Complexity
3.	 Large	Program	Evolution
4.	 Invariant	Work-Rate
5.	 Conservation	of	Familiarity
6.	 Continuing	Growth
7.	 Declining	Quality
8.	 Feedback	System
It	is	worth	mentioning	that	the	laws	are	believed	to	apply	mainly	to	monolithic,	proprietary	software.	For	example,	some	empirical	observations	coming	from	the	study	of	open	source
software	development	appear	to	challenge	some	of	the	laws[citation	needed].

The	 laws	 predict	 that	 change	 is	 inevitable	 and	 not	 a	 consequence	 of	 bad	 programming	 and	 that	 there	 are	 limits	 to	 what	 a	 software	 evolution	 team	 can	 achieve	 in	 terms	 of	 safely
implementing	changes	and	new	functionality.

Further	reading

External	links

Evolution

General	introduction

Types	of	software	maintenance

Lehman's	Laws	of	Software	Evolution

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/978-0470-14707-8
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/9780070483453
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.software-continuity.com/
http://www3.interscience.wiley.com/cgi-bin/jhome/5391/
http://www.s3m.ca/
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-335
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-337
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR

www.manaraa.com

Maturity	Models	specific	to	software	evolution	have	been	developed	to	help	improve	processes	to	ensure	continuous	rejuvenation	of	the	software	evolves	iteratively.

The	 "global	process"	 that	 is	made	by	 the	many	 stakeholders	 (e.g.	developers,	users,	 their	managers)	has	many	 feedback	 loops.	The	 evolution	 speed	 is	 a	 function	of	 the	 feedback	 loop
structure	and	other	characteristics	of	the	global	system.	Process	simulation	techniques,	such	as	system	dynamics	can	be	useful	in	understanding	and	managing	such	global	process.

Software	evolution	is	not	likely	to	be	Darwinian,	Lamarckian	or	Baldwinian,	but	an	important	phenomenon	on	its	own.	Giving	the	increasing	dependence	on	software	at	all	levels	of	society
and	economy,	the	successful	evolution	of	software	is	becoming	increasingly	critical.	This	is	an	important	topic	of	research	that	hasn't	received	much	attention.

The	evolution	of	software,	because	of	its	rapid	path	in	comparison	to	other	man-made	entities,	was	seen	by	Lehman	as	the	"fruit	fly"	of	the	study	of	the	evolution	of	artificial	systems.

1.	 Fred	Brooks,	The	Mythical	Man-Month.	Addison-Wesley,	1975	&	1995.	ISBN	0-201-00650-2	&	ISBN	0-201-83595-9
2.	 Lientz,	B.P.	and	Swanson,	E.B.,	Software	Maintenance	Management,	A	Study	Of	The	Maintenance	Of	Computer	Application	Software	In	487	Data	Processing	Organizations
Wesley,	Reading	MA,	1980.	ISBN	0201042053

3.	 ISO/IEC	14764:2006,	2006.

Project	Management

Software	project	management	is	the	art	and	science	of	planning	and	leading	software	projects[1].	It	is	a	sub-discipline	of	project	management	in	which	software	projects	are	planned,
monitored	and	controlled.

The	history	of	software	project	management	is	closely	related	to	the	history	of	software.	Software	was	developed	for	dedicated	purposes	for	dedicated	machines	until	the	concept	of	object-
oriented	programming	began	to	become	popular	in	the	1960's,	making	repeatable	solutions	possible	for	the	software	industry.	Dedicated	systems	could	be	adapted	to	other	uses	thanks	to
component-based	software	engineering.	Companies	quickly	understood	the	relative	ease	of	use	that	software	programming	had	over	hardware	circuitry,	and	the	software	industry	grew	very
quickly	in	the	1970's	and	1980's.	To	manage	new	development	efforts,	companies	applied	proven	project	management	methods,	but	project	schedules	slipped	during	test	runs,	especially
when	confusion	occurred	in	the	gray	zone	between	the	user	specifications	and	the	delivered	software.	To	be	able	to	avoid	these	problems,	software	project	management	methods	focused	on
matching	 user	 requirements	 to	 delivered	 products,	 in	 a	method	 known	 now	 as	 the	waterfall	model.	 Since	 then,	 analysis	 of	 software	 project	management	 failures	 has	 shown	 that	 the
following	are	the	most	common	causes:[2]

1.	 Unrealistic	or	unarticulated	project	goals
2.	 Inaccurate	estimates	of	needed	resources
3.	 Badly	defined	system	requirements
4.	 Poor	reporting	of	the	project's	status
5.	 Unmanaged	risks
6.	 Poor	communication	among	customers,	developers,	and	users
7.	 Use	of	immature	technology
8.	 Inability	to	handle	the	project's	complexity
9.	 Sloppy	development	practices
10.	 Poor	project	management
11.	 Stakeholder	politics
12.	 Commercial	pressures
The	first	three	items	in	the	list	above	show	the	difficulties	articulating	the	needs	of	the	client	in	such	a	way	that	proper	resources	can	deliver	the	proper	project	goals.	Specific	software
project	management	tools	are	useful	and	often	necessary,	but	the	true	art	in	software	project	management	is	applying	the	correct	method	and	then	using	tools	to	support	the	method.
Without	a	method,	tools	are	worthless.	Since	the	1960's,	several	proprietary	software	project	management	methods	have	been	developed	by	software	manufacturers	for	their	own	use,	while
computer	consulting	firms	have	also	developed	similar	methods	for	their	clients.	Today	software	project	management	methods	are	still	evolving,	but	the	current	trend	leads	away	from	the
waterfall	model	to	a	more	cyclic	project	delivery	model	that	imitates	a	Software	release	life	cycle.

A	software	development	process	is	concerned	primarily	with	the	production	aspect	of	software	development,	as	opposed	to	the	technical	aspect,	such	as	software	tools.	These	processes	exist
primarily	for	supporting	the	management	of	software	development,	and	are	generally	skewed	toward	addressing	business	concerns.	Many	software	development	processes	can	be	run	in	a
similar	way	to	general	project	management	processes.	Examples	are:

Risk	management	is	the	process	of	measuring	or	assessing	risk	and	then	developing	strategies	to	manage	the	risk.	In	general,	the	strategies	employed	include	transferring	the	risk	to
another	party,	avoiding	the	risk,	reducing	the	negative	effect	of	the	risk,	and	accepting	some	or	all	of	the	consequences	of	a	particular	risk.	Risk	management	in	software	project
management	begins	with	the	business	case	for	starting	the	project,	which	includes	a	cost-benefit	analysis	as	well	as	a	list	of	fallback	options	for	project	failure,	called	a	contingency
plan.
A	subset	of	risk	management	that	is	gaining	more	and	more	attention	is	"Opportunity	Management",	which	means	the	same	thing,	except	that	the	potential	risk	outcome	will	have	a
positive,	rather	than	a	negative	impact.	Though	theoretically	handled	in	the	same	way,	using	the	term	"opportunity"	rather	than	the	somewhat	negative	term	"risk"	helps	to	keep	a
team	focused	on	possible	positive	outcomes	of	any	given	risk	register	in	their	projects,	such	as	spin-off	projects,	windfalls,	and	free	extra	resources.

References

Introduction

History

Software	development	process

https://en.wikibooks.org/wiki/Special:BookSources/0-201-83595-9
https://en.wikibooks.org/wiki/Special:BookSources/0201042053
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Stellman05-338
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-339

www.manaraa.com

Requirements	management	is	the	process	of	identifying,	eliciting,	documenting,	analyzing,	tracing,	prioritizing	and	agreeing	on	requirements	and	then	controlling	change	and
communicating	to	relevant	stakeholders.	New	or	altered	computer	system[1]	Requirements	management,	which	includes	Requirements	analysis,	is	an	important	part	of	the	software
engineering	process;	whereby	business	analysts	or	software	developers	identify	the	needs	or	requirements	of	a	client;	having	identified	these	requirements	they	are	then	in	a	position	to
design	a	solution.
Change	management	is	the	process	of	identifying,	documenting,	analyzing,	prioritizing	and	agreeing	on	changes	to	scope	(project	management)	and	then	controlling	changes	and
communicating	to	relevant	stakeholders.	Change	impact	analysis	of	new	or	altered	scope,	which	includes	Requirements	analysis	at	the	change	level,	is	an	important	part	of	the	software
engineering	process;	whereby	business	analysts	or	software	developers	identify	the	altered	needs	or	requirements	of	a	client;	having	identified	these	requirements	they	are	then	in	a
position	to	re-design	or	modify	a	solution.	Theoretically,	each	change	can	impact	the	timeline	and	budget	of	a	software	project,	and	therefore	by	definition	must	include	risk-benefit
analysis	before	approval.
Software	configuration	management	is	the	process	of	identifying,	and	documenting	the	scope	itself,	which	is	the	software	product	underway,	including	all	sub-products	and	changes	and
enabling	communication	of	these	to	relevant	stakeholders.	In	general,	the	processes	employed	include	version	control,	naming	convention	(programming),	and	software	archival
agreements.
Release	management	is	the	process	of	identifying,	documenting,	prioritizing	and	agreeing	on	releases	of	software	and	then	controlling	the	release	schedule	and	communicating	to
relevant	stakeholders.	Most	software	projects	have	access	to	three	software	environments	to	which	software	can	be	released;	Development,	Test,	and	Production.	In	very	large	projects,
where	distributed	teams	need	to	integrate	their	work	before	release	to	users,	there	will	often	be	more	environments	for	testing,	called	unit	testing,	system	testing,	or	integration	testing,
before	release	to	User	acceptance	testing	(UAT).
A	subset	of	release	management	that	is	gaining	more	and	more	attention	is	Data	Management,	as	obviously	the	users	can	only	test	based	on	data	that	they	know,	and	"real"	data	is
only	in	the	software	environment	called	"production".	In	order	to	test	their	work,	programmers	must	therefore	also	often	create	"dummy	data"	or	"data	stubs".	Traditionally,	older
versions	of	a	production	system	were	once	used	for	this	purpose,	but	as	companies	rely	more	and	more	on	outside	contributors	for	software	development,	company	data	may	not	be
released	to	development	teams.	In	complex	environments,	data-sets	may	be	created	that	are	then	migrated	across	test	environments	according	to	a	test	release	schedule,	much	like	the
overall	software	release	schedule.

The	purpose	of	project	planning	is	to	identify	the	scope	of	the	project,	estimate	the	work	involved,	and	create	a	project	schedule.	Project	planning	begins	with	requirements	that	define	the
software	to	be	developed.	The	project	plan	is	then	developed	to	describe	the	tasks	that	will	lead	to	completion.

The	purpose	of	project	monitoring	and	control	is	to	keep	the	team	and	management	up	to	date	on	the	project's	progress.	If	the	project	deviates	from	the	plan,	then	the	project	manager
can	take	action	to	correct	the	problem.	Project	monitoring	and	control	involves	status	meetings	to	gather	status	from	the	team.	When	changes	need	to	be	made,	change	control	is	used	to
keep	the	products	up	to	date.

In	computing,	the	term	issue	is	a	unit	of	work	to	accomplish	an	improvement	in	a	system.	An	issue	could	be	a	bug,	a	requested	feature,	task,	missing	documentation,	and	so	forth.	The
word	"issue"	is	popularly	misused	in	lieu	of	"problem."	This	usage	is	probably	related.[citation	needed]

For	example,	OpenOffice.org	used	to	call	their	modified	version	of	BugZilla	IssueZilla.	As	of	September	2010,	they	call	their	system	Issue	Tracker.

Problems	occur	from	time	to	time	and	fixing	them	in	a	timely	fashion	is	essential	to	achieve	correctness	of	a	system	and	avoid	delayed	deliveries	of	products.

Issues	are	often	categorized	in	terms	of	severity	levels.	Different	companies	have	different	definitions	of	severities,	but	some	of	the	most	common	ones	are:

Critical
High	-	The	bug	or	issue	affects	a	crucial	part	of	a	system,	and	must	be	fixed	in	order	for	it	to	resume	normal	operation.
Medium	-	The	bug	or	issue	affects	a	minor	part	of	a	system,	but	has	some	impact	on	its	operation.	This	severity	level	is	assigned	when	a	non-central	requirement	of	a	system	is
affected.
Low	-	The	bug	or	issue	affects	a	minor	part	of	a	system,	and	has	very	little	impact	on	its	operation.	This	severity	level	is	assigned	when	a	non-central	requirement	of	a	system	(and
with	lower	importance)	is	affected.
Cosmetic	-	The	system	works	correctly,	but	the	appearance	does	not	match	the	expected	one.	For	example:	wrong	colors,	too	much	or	too	little	spacing	between	contents,	incorrect	font
sizes,	typos,	etc.	This	is	the	lowest	priority	issue.

In	many	 software	 companies,	 issues	 are	 often	 investigated	 by	Quality	Assurance	Analysts	when	 they	 verify	 a	 system	 for	 correctness,	 and	 then	 assigned	 to	 the	 developer(s)	 that	 are
responsible	for	resolving	them.	They	can	also	be	assigned	by	system	users	during	the	User	Acceptance	Testing	(UAT)	phase.

Issues	are	commonly	communicated	using	Issue	or	Defect	Tracking	Systems.	In	some	other	cases,	emails	or	instant	messengers	are	used.

As	a	subdiscipline	of	project	management,	some	regard	the	management	of	software	development	akin	to	the	management	of	manufacturing,	which	can	be	performed	by	someone	with
management	skills,	but	no	programming	skills.	John	C.	Reynolds	rebuts	this	view,	and	argues	that	software	development	is	entirely	design	work,	and	compares	a	manager	who	cannot
program	to	the	managing	editor	of	a	newspaper	who	cannot	write.[3]

Project	planning,	monitoring	and	control

Issue

Severity	levels

Philosophy

External	links

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Stellman05-338
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-340

www.manaraa.com

Resources	on	Software	Project	Management	from	Steve	McConnell:	http://www.construx.com/Page.aspx?nid=22
Resources	on	Software	Project	Management	from	Dan	Galorath:	http://www.galorath.com/wp/category/project-management

1.	 Stellman,	Andrew;	Greene,	Jennifer	(2005).	Applied	Software	Project	Management.	O'Reilly	Media.	ISBN	978-0-596-00948-9
2.	 IEEE	(http://spectrum.ieee.org/computing/software/why-software-fails/5)	magazine	article	"Why	Software	Fails"
3.	 John	C.	Reynolds,	Some	thoughts	on	teaching	programming	and	programming	languages,	SIGPLAN	Notices,	Volume	43,	Issue	11,	November	2008,	p.108:	"Some	argue	that	one	can
manage	software	production	without	the	ability	to	program.	This	belief	seems	to	arise	from	the	mistaken	view	that	software	production	is	a	form	of	manufacturing.	But	manufacturing
is	the	repeated	construction	of	identical	objects,	while	software	production	is	the	construction	of	unique	objects,	i.e.,	the	entire	process	is	a	form	of	design.	As	such	it	is	closer	to	the
production	of	a	newspaper	—	so	that	a	software	manager	who	cannot	program	is	akin	to	a	managing	editor	who	cannot	write."

Jalote,	Pankaj	(2002).	Software	project	management	in	practice.	Addison-Wesley.	ISBN	0201737213.

Software	development	efforts	estimation	 is	 the	process	of	predicting	 the	most	 realistic	use	of	 effort	 required	 to	develop	or	maintain	 software	based	on	 incomplete,	uncertain
and/or	noisy	input.	Effort	estimates	may	be	used	as	input	to	project	plans,	iteration	plans,	budgets,	investment	analyses,	pricing	processes	and	bidding	rounds.

Published	surveys	on	estimation	practice	suggest	that	expert	estimation	is	the	dominant	strategy	when	estimating	software	development	effort

Typically,	effort	estimates	are	over-optimistic	and	there	is	a	strong	over-confidence	in	their	accuracy.	The	mean	effort	overrun	seems	to	be	about	30%	and	not	decreasing	over	time.	For	a
review	of	effort	estimation	error	surveys,	see	[2].	However,	the	measurement	of	estimation	error	is	not	unproblematic,	see	Assessing	and	interpreting	the	accuracy	of	effort	estimates.	The
strong	over-confidence	in	the	accuracy	of	the	effort	estimates	is	illustrated	by	the	finding	that,	on	average,	if	a	software	professional	is	90%	confident	or	“almost	sure”	to	include	the	actual
effort	in	a	minimum-maximum	interval,	the	observed	frequency	of	including	the	actual	effort	is	only	60-70%	[3].

Currently	the	term	“effort	estimate”	is	used	to	denote	as	different	concepts	as	most	likely	use	of	effort	(modal	value),	the	effort	that	corresponds	to	a	probability	of	50%	of	not	exceeding
(median),	the	planned	effort,	the	budgeted	effort	or	the	effort	used	to	propose	a	bid	or	price	to	the	client.	This	is	believed	to	be	unfortunate,	because	communication	problems	may	occur
and	because	the	concepts	serve	different	goals	[4]	[5].

Software	researchers	and	practitioners	have	been	addressing	the	problems	of	effort	estimation	for	software	development	projects	since	at	least	the	1960s;	see,	e.g.,	work	by	Farr	
Nelson	[7].

Most	of	the	research	has	focused	on	the	construction	of	formal	software	effort	estimation	models.	The	early	models	were	typically	based	on	regression	analysis	or	mathematically	derived
from	theories	from	other	domains.	Since	then	a	high	number	of	model	building	approaches	have	been	evaluated,	such	as	approaches	founded	on	case-based	reasoning,	classification	and
regression	trees,	simulation,	neural	networks,	Bayesian	statistics,	lexical	analysis	of	requirement	specifications,	genetic	programming,	linear	programming,	economic	production	models,	soft
computing,	 fuzzy	 logic	modeling,	 statistical	 bootstrapping,	 and	 combinations	 of	 two	 or	more	 of	 these	models.	The	 perhaps	most	 common	 estimation	 products	 today,	 e.g.,	 the	 formal
estimation	models	COCOMO	and	SLIM	have	their	basis	in	estimation	research	conducted	in	the	1970s	and	1980s.	The	estimation	approaches	based	on	functionality-based	size	measures,
e.g.,	function	points,	is	also	based	on	research	conducted	in	the	1970s	and	1980s,	but	are	re-appearing	with	modified	size	measures	under	different	labels,	such	as	“use	case	points”	
1990s	and	COSMIC	(http://www.cosmicon.com)	in	the	2000s.

There	are	many	ways	of	categorizing	estimation	approaches,	see	for	example	[9][10].	The	top	level	categories	are	the	following:

Expert	estimation:	The	quantification	step,	i.e.,	the	step	where	the	estimate	is	produced	based	on	judgmental	processes.
Formal	estimation	model:	The	quantification	step	is	based	on	mechanical	processes,	e.g.,	the	use	of	a	formula	derived	from	historical	data.
Combination-based	estimation:	The	quantification	step	is	based	on	a	judgmental	or	mechanical	combination	of	estimates	from	different	sources.

Below	are	examples	of	estimation	approaches	within	each	category.

References

Software	Estimation

State-of-practice

History

Estimation	approaches

http://www.construx.com/Page.aspx?nid=22
http://www.galorath.com/wp/category/project-management
http://www.stellman-greene.com/aspm/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/978-0-596-00948-9
http://spectrum.ieee.org/computing/software/why-software-fails/5
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0201737213
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-342
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-343
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-344
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-345
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-347
http://www.cosmicon.com/
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-349
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-350

www.manaraa.com

Estimation	approach Category Examples	of	support	of	implementation	of	estimation	approach

Analogy-based	estimation Formal	estimation	model ANGEL,	Weighted	Micro	Function	Points

WBS-based	(bottom	up)	estimation Expert	estimation Project	management	software,	company	specific	activity	templates

Parametric	models Formal	estimation	model COCOMO,	SLIM,	SEER-SEM

Size-based	estimation	models[11] Formal	estimation	model Function	Point	Analysis[12],	Use	Case	Analysis,	Story	points-based	estimation	in	Agile	software	development

Group	estimation Expert	estimation Planning	poker,	Wideband	Delphi

Mechanical	combination Combination-based	estimation Average	of	an	analogy-based	and	a	Work	breakdown	structure-based	effort	estimate

Judgmental	combination Combination-based	estimation Expert	judgment	based	on	estimates	from	a	parametric	model	and	group	estimation

The	evidence	on	differences	in	estimation	accuracy	of	different	estimation	approaches	and	models	suggest	that	there	is	no	“best	approach”	and	that	the	relative	accuracy	of	one	approach
or	model	in	comparison	to	another	depends	strongly	on	the	context	[13].	This	implies	that	different	organizations	benefit	from	different	estimation	approaches.	Findings,	summarized	in
[14],	that	may	support	the	selection	of	estimation	approach	based	on	the	expected	accuracy	of	an	approach	include:

Expert	estimation	is	on	average	at	least	as	accurate	as	model-based	effort	estimation.	In	particular,	situations	with	unstable	relationships	and	information	of	high	importance	not
included	in	the	model	may	suggest	use	of	expert	estimation.	This	assumes,	of	course,	that	experts	with	relevant	experience	are	available.
Formal	estimation	models	not	tailored	to	a	particular	organization’s	own	context,	may	be	very	inaccurate.	Use	of	own	historical	data	is	consequently	crucial	if	one	cannot	be	sure	that
the	estimation	model’s	core	relationships	(e.g.,	formula	parameters)	are	based	on	similar	project	contexts.
Formal	estimation	models	may	be	particularly	useful	in	situations	where	the	model	is	tailored	to	the	organization’s	context	(either	through	use	of	own	historical	data	or	that	the	model
is	derived	from	similar	projects	and	contexts),	and/or	it	is	likely	that	the	experts’	estimates	will	be	subject	to	a	strong	degree	of	wishful	thinking.

The	most	robust	finding,	in	many	forecasting	domains,	is	that	combination	of	estimates	from	independent	sources,	preferable	applying	different	approaches,	will	on	average	improve	the
estimation	accuracy	[15]	[16]	[17].

In	addition,	other	factors	such	as	ease	of	understanding	and	communicating	the	results	of	an	approach,	ease	of	use	of	an	approach,	cost	of	introduction	of	an	approach	should	be	considered
in	a	selection	process.

The	uncertainty	of	an	effort	estimate	can	be	described	through	a	prediction	interval	(PI).	An	effort	PI	is	based	on	a	stated	certainty	level	and	contains	a	minimum	and	a	maximum	effort
value.	For	example,	a	project	leader	may	estimate	that	the	most	likely	effort	of	a	project	is	1000	work-hours	and	that	it	is	90%	certain	that	the	actual	effort	will	be	between	500	and	2000
work-hours.	Then,	the	 interval	 [500,	2000]	work-hours	 is	the	90%	PI	of	the	effort	estimate	of	1000	work-hours.	Frequently,	other	terms	are	used	 instead	of	PI,	e.g.,	prediction	bounds,
prediction	 limits,	 interval	 prediction,	 prediction	 region	 and,	 unfortunately,	 confidence	 interval.	 An	 important	 difference	 between	 confidence	 interval	 and	 PI	 is	 that	 PI	 refers	 to	 the
uncertainty	of	an	estimate,	while	confidence	interval	usually	refers	to	the	uncertainty	associated	with	the	parameters	of	an	estimation	model	or	distribution,	e.g.,	the	uncertainty	of	the
mean	value	of	a	distribution	of	effort	values.	The	confidence	level	of	a	PI	refers	to	the	expected	(or	subjective)	probability	that	the	real	value	is	within	the	predicted	interval

There	are	several	possible	approaches	to	calculate	effort	PIs,	e.g.,	formal	approaches	based	on	regression	or	bootstrapping	
previous	estimation	error	[20],	and	pure	expert	judgment	of	minimum-maximum	effort	for	a	given	level	of	confidence.	Expert	judgments	based	on	the	distribution	of	previous	estimation
error	has	been	found	to	systematically	lead	to	more	realistic	uncertainty	assessment	than	the	traditional	minimum-maximum	effort	intervals	in	several	studies,	see	for	example	

The	most	common	measures	of	the	average	estimation	accuracy	is	the	MMRE	(Mean	Magnitude	of	Relative	Error),	where	MRE	is	defined	as:

MRE	=	|actual	effort	−	estimated	effort|	/	|actual	effort|

This	measure	has	been	criticized	[22]	[23]	[24]	and	there	are	several	alternative	measures,	such	as	more	symmetric	measures	
and	Mean	Variation	from	Estimate	(MVFE)	[27].

A	high	estimation	error	cannot	automatically	be	interpreted	as	an	indicator	of	low	estimation	ability.	Alternative,	competing	or	complementing,	reasons	include	low	cost	control	of	project,
high	complexity	of	development	work,	and	more	delivered	functionality	than	originally	estimated.	A	framework	for	 improved	use	and	interpretation	of	estimation	error	measurement	is
included	in	[28].

There	are	many	psychological	factors	potentially	explaining	the	strong	tendency	towards	over-optimistic	effort	estimates	that	need	to	be	dealt	with	to	increase	accuracy	of	effort	estimates.
These	factors	are	essential	even	when	using	formal	estimation	models,	because	much	of	the	input	to	these	models	is	judgment-based.	Factors	that	have	been	demonstrated	to	be	important
are:	Wishful	thinking,	anchoring,	planning	fallacy	and	cognitive	dissonance.	A	discussion	on	these	and	other	factors	can	be	found	in	work	by	Jørgensen	and	Grimstad	

It's	easy	to	estimate	what	you	know.
It's	hard	to	estimate	what	you	know	you	don't	know.
It's	very	hard	to	estimate	things	that	you	don't	know	you	don't	know.

Selection	of	estimation	approach

Uncertainty	assessment	approaches

Assessing	and	interpreting	the	accuracy	of	effort	estimates

Psychological	issues	related	to	effort	estimation

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-351
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-352
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-353
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-354
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-355
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-356
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-357
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-360
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-362
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-363
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-364
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-367
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-368

www.manaraa.com

1.	 Jørgensen,	M..	"A	Review	of	Studies	on	Expert	Estimation	of	Software	Development	Effort".	http://simula.no/research/engineering/publications/SE.4.Joergensen.2004.c
2.	 Molokken,	K.	Jorgensen,	M..	"A	review	of	software	surveys	on	software	effort	estimation".	http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1237981
3.	 Jørgensen,	M.	Teigen,	K.H.	Ribu,	K..	"Better	sure	than	safe?	Over-confidence	in	judgement	based	software	development	effort	prediction	intervals"
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0N-49N06GS-
5&_user=674998&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000036598&_version=1&_urlVersion=0&_userid=674998&md5=36c6383445cf481447d06cb30c1ccb63

4.	 Edwards,	J.S.	Moores,	T.T.	(1994),	"A	conflict	between	the	use	of	estimating	and	planning	tools	in	the	management	of	information	systems.".	European	Journal	of	Information	Systems
3(2):	139-147.

5.	 Goodwin,	P.	(1998).	Enhancing	judgmental	sales	forecasting:	The	role	of	laboratory	research.	Forecasting	with	judgment.	G.	Wright	and	P.	Goodwin.	New	York,	John	Wiley	&	Sons:
91-112.

6.	 Farr,	L.	Nanus,	B..	"Factors	that	affect	the	cost	of	computer	programming".	http://stinet.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0603707
7.	 Nelson,	E.	A.	(1966).	Management	Handbook	for	the	Estimation	of	Computer	Programming	Costs.	AD-A648750,	Systems	Development	Corp.
8.	 Anda,	B.	Angelvik,	E.	Ribu,	K..	"Improving	Estimation	Practices	by	Applying	Use	Case	Models".	http://www.springerlink.com/content/7lpyel912m5cr654/
9.	 Briand,	L.	C.	and	I.	Wieczorek	(2002).	Resource	estimation	in	software	engineering.	Encyclopedia	of	software	engineering.	J.	J.	Marcinak.	New	York,	John	Wiley	&	Sons:	1160-1196.
10.	 Jørgensen,	M.	Shepperd,	M..	"A	Systematic	Review	of	Software	Development	Cost	Estimation	Studies".	http://simula.no/research/engineering/publications/Jorgensen.2007.1
11.	 Hill	Peter	(ISBSG)	-	Estimation	Workbook	2	-	published	by	International	Software	Benchmarking	Standards	Group	

ww.isbsg.org/ISBSGnew.nsf/WebPages/~GBL~Practical%20Project%20Estimation%202nd%20Edition)
12.	 Morris	Pam	-	Overview	of	Function	Point	Analysis	Total	Metrics	-	Function	Point	Resource	Centre	(http://www.totalmetrics.com/function-point-resources/what-are-function-points)
13.	 Shepperd,	M.	Kadoda,	G..	"Comparing	software	prediction	techniques	using	simulation".	http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/32/20846/00965341.pdf?

arnumber=965341.
14.	 Jørgensen,	M..	"Estimation	of	Software	Development	Work	Effort:Evidence	on	Expert	Judgment	and	Formal	Models"

http://simula.no/research/engineering/publications/Jorgensen.2007.2.
15.	 Winkler,	R.L..	"Combining	forecasts:	A	philosophical	basis	and	some	current	issues	Manager".	http://www.sciencedirect.com/science/article/B6V92-45P4G7H-

2B/2/d05dc6c369ab173c5792a05ea1be21d9.
16.	 Blattberg,	R.C.	Hoch,	S.J..	"Database	Models	and	Managerial	Intuition:	50%	Model	+	50%	Manager".	http://www.jstor.org/pss/2632364
17.	 Jørgensen,	M..	"Estimation	of	Software	Development	Work	Effort:Evidence	on	Expert	Judgment	and	Formal	Models"

http://simula.no/research/engineering/publications/Jorgensen.2007.2.
18.	 Armstrong,	J.	S..	"Principles	of	forecasting:	A	handbook	for	researchers	and	practitioners".	http://www.forecastingprinciples.com
19.	 Angelis,	L.	Stamelos,	I..	"A	simulation	tool	for	efficient	analogy	based	cost	estimation".	http://portal.acm.org/citation.cfm?id=594467&dl=ACM&coll=portal
20.	 Jørgensen,	M.	Sjøberg,	D.I.K..	"An	effort	prediction	interval	approach	based	on	the	empirical	distribution	of	previous	estimation	accuracy"

_ob=ArticleURL&_udi=B6V0B-47HC6S5-
1&_user=674998&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000036598&_version=1&_urlVersion=0&_userid=674998&md5=6cb917a379855c79eebe9f18ca9ac424

21.	 Jørgensen,	M..	"Realism	in	assessment	of	effort	estimation	uncertainty:	It	matters	how	you	ask".	http://simula.no/research/engineering/publications/SE.4.Joergensen.2004.e
22.	 Shepperd,	M.	Cartwright,	M.	Kadoda,	G..	"On	Building	Prediction	Systems	for	Software	Engineers".

http://www.ingentaconnect.com/content/klu/emse/2000/00000005/00000003/00278191.
23.	 Kitchenham,	B.	Pickard,	L.M.	MacDonell,	S.G.	Shepperd,.	"What	accuracy	statistics	really	measure".	http://scitation.aip.org/getabs/servlet/GetabsServlet?

prog=normal&id=IPSEFU000148000003000081000001&idtype=cvips&gifs=yes.
24.	 Foss,	T.	Stensrud,	E.	Kitchenham,	B.	Myrtveit,	I..	"A	Simulation	Study	of	the	Model	Evaluation	Criterion	MMRE"
25.	 Miyazaki,	Y.	Terakado,	M.	Ozaki,	K.	Nozaki,	H..	"Robust	regression	for	developing	software	estimation	models".	
26.	 Lo,	B.	Gao,	X..	"Assessing	Software	Cost	Estimation	Models:	criteria	for	accuracy,	consistency	and	regression".	http://dl.acs.org.au/index.php/ajis/article/view/348
27.	 Hughes,	R.T.	Cunliffe,	A.	Young-Martos,	F..	"Evaluating	software	development	effort	model-building	techniquesfor	application	in	a	real-time	telecommunications	environment"

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=689296.
28.	 Grimstad,	S.	Jørgensen,	M..	"A	Framework	for	the	Analysis	of	Software	Cost	Estimation	Accuracy".

http://simula.no/research/engineering/publications/Grimstad.2006.2/simula_pdf_file.
29.	 Jørgensen,	M.	Grimstad,	S..	"How	to	Avoid	Impact	from	Irrelevant	and	Misleading	Information	When	Estimating	Software	Development	Effort"

http://simula.no/research/engineering/publications/Simula.SE.112.

Industry	Productivity	data	for	Input	into	Software	Development	Estimates	and	guidance	and	tools	for	Estimation	-	International	Software	Benchmarking	Standards	Group:

References

External	links

http://simula.no/research/engineering/publications/SE.4.Joergensen.2004.c
http://simula.no/research/engineering/publications/SE.4.Joergensen.2004.c
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1237981
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1237981
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0N-49N06GS-5&_user=674998&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000036598&_version=1&_urlVersion=0&_userid=674998&md5=36c6383445cf481447d06cb30c1ccb63
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0N-49N06GS-5&_user=674998&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000036598&_version=1&_urlVersion=0&_userid=674998&md5=36c6383445cf481447d06cb30c1ccb63
http://stinet.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0603707
http://stinet.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0603707
http://www.springerlink.com/content/7lpyel912m5cr654/
http://www.springerlink.com/content/7lpyel912m5cr654/
http://simula.no/research/engineering/publications/Jorgensen.2007.1
http://simula.no/research/engineering/publications/Jorgensen.2007.1
http://www.isbsg.org/ISBSGnew.nsf/WebPages/~GBL~Practical%20Project%20Estimation%202nd%20Edition
http://www.totalmetrics.com/function-point-resources/what-are-function-points
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/32/20846/00965341.pdf?arnumber=965341
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/32/20846/00965341.pdf?arnumber=965341
http://simula.no/research/engineering/publications/Jorgensen.2007.2
http://simula.no/research/engineering/publications/Jorgensen.2007.2
http://www.sciencedirect.com/science/article/B6V92-45P4G7H-2B/2/d05dc6c369ab173c5792a05ea1be21d9
http://www.sciencedirect.com/science/article/B6V92-45P4G7H-2B/2/d05dc6c369ab173c5792a05ea1be21d9
http://www.jstor.org/pss/2632364
http://www.jstor.org/pss/2632364
http://simula.no/research/engineering/publications/Jorgensen.2007.2
http://simula.no/research/engineering/publications/Jorgensen.2007.2
http://www.forecastingprinciples.com/
http://www.forecastingprinciples.com/
http://portal.acm.org/citation.cfm?id=594467&dl=ACM&coll=portal
http://portal.acm.org/citation.cfm?id=594467&dl=ACM&coll=portal
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0B-47HC6S5-1&_user=674998&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000036598&_version=1&_urlVersion=0&_userid=674998&md5=6cb917a379855c79eebe9f18ca9ac424
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0B-47HC6S5-1&_user=674998&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000036598&_version=1&_urlVersion=0&_userid=674998&md5=6cb917a379855c79eebe9f18ca9ac424
http://simula.no/research/engineering/publications/SE.4.Joergensen.2004.e
http://simula.no/research/engineering/publications/SE.4.Joergensen.2004.e
http://www.ingentaconnect.com/content/klu/emse/2000/00000005/00000003/00278191
http://www.ingentaconnect.com/content/klu/emse/2000/00000005/00000003/00278191
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=IPSEFU000148000003000081000001&idtype=cvips&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=IPSEFU000148000003000081000001&idtype=cvips&gifs=yes
http://portal.acm.org/citation.cfm?id=951936
http://portal.acm.org/citation.cfm?id=198684
http://dl.acs.org.au/index.php/ajis/article/view/348
http://dl.acs.org.au/index.php/ajis/article/view/348
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=689296
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=689296
http://simula.no/research/engineering/publications/Grimstad.2006.2/simula_pdf_file
http://simula.no/research/engineering/publications/Grimstad.2006.2/simula_pdf_file
http://simula.no/research/engineering/publications/Simula.SE.112
http://simula.no/research/engineering/publications/Simula.SE.112

www.manaraa.com

http://www.isbsg.org
Free	first-order	benchmarking	utility	from	Software	Benchmarking	Organization:	http://www.sw-benchmarking.org/report.php
Special	Interest	Group	on	Software	Effort	Estimation:	http://www.forecastingprinciples.com/Software_Estimation/index.html
General	forecasting	principles:	http://www.forecastingprinciples.com
Project	estimation	tools:	http://www.projectmanagementguides.com/TOOLS/project_estimation_tools.html
Downloadable	research	papers	on	effort	estimation:	http://simula.no/research/engineering/projects/best
Mike	Cohn's	Estimating	With	Use	Case	Points	from	article	from	Methods	&	Tools:	http://www.methodsandtools.com/archive/archive.php?id=25
Resources	on	Software	Estimation	from	Steve	McConnell:	http://www.construx.com/Page.aspx?nid=297
Resources	on	Software	Estimation	from	Dan	Galorath:	http://www.galorath.com/wp/

The	ability	to	accurately	estimate	the	time	and/or	cost	taken	for	a	project	to	come	in	to	 its	successful	conclusion	is	a	serious	problem	for	software	engineers.	The	use	of	a	repeatable,
clearly	defined	and	well	understood	software	development	process	has,	in	recent	years,	shown	itself	to	be	the	most	effective	method	of	gaining	useful	historical	data	that	can	be	used	for
statistical	estimation.	In	particular,	the	act	of	sampling	more	frequently,	coupled	with	the	loosening	of	constraints	between	parts	of	a	project,	has	allowed	more	accurate	estimation	and
more	rapid	development	times.

Popular	methods	for	estimation	in	software	engineering	include:

Analysis	Effort	method
COCOMO
COSYSMO
Evidence-based	Scheduling	Refinement	of	typical	agile	estimating	techniques	using	minimal	measurement	and	total	time	accounting.
Function	Point	Analysis
Parametric	Estimating
PRICE	Systems	Founders	of	Commercial	Parametric	models	that	estimates	the	scope,	cost,	effort	and	schedule	for	software	projects.
Proxy-based	estimating	(PROBE)	(from	the	Personal	Software	Process)
Program	Evaluation	and	Review	Technique	(PERT)
SEER-SEM	Parametric	Estimation	of	Effort,	Schedule,	Cost,	Risk.	Mimimum	time	and	staffing	concepts	based	on	Brooks's	law
SLIM
The	Planning	Game	(from	Extreme	Programming)
Weighted	Micro	Function	Points	(WMFP)
Wideband	Delphi

Software	Estimation	chapter	(http://www.stellman-greene.com/ch03)	from	Applied	Software	Project	Management
Article	Estimating	With	Use	Case	Points	(http://www.methodsandtools.com/archive/archive.php?id=25)	from	Methods	&	Tools
The	Dynamics	of	Software	Projects	Estimation	(http://softwaresurvival.blogspot.com/2006/11/dynamics-of-effort-estimation-in-most.html)
Resources	on	Software	Estimation	(http://www.construx.com/Page.aspx?nid=297)	from	Steve	McConnell
Links	on	tools	and	techniques	of	software	estimation	(http://www.uduko.com/topic_detail/details/47)
Article	Estimating	techniques	throughout	the	SDLC	(http://www.gem-up.com/PDF/SK903V1_WP_Estimating.pdf)

Even	though	there	isn't	a	common	way	to	calculate	development	speed,	in	recent	trenda,	software	communities	have	started	using	the	terms	velocity	and	burn	down.

The	term	velocity	(just	like	is	physics)	is	how	fast	the	team,	from	the	starting	point	until	the	goal.	In	the	software	project	this	should	be	how	fast	the	team	finishing	the	story	point	per
iteration.

Tools

Basically,	for	every	step	in	the	development	process	there	are	tools	available.

Modelling	and	Case	Tools:	StarUML,	objectiF,	Visio,	ArgoUML

Writing	Code:	IDEs	like	Eclipse,	Netbeans,	Visual	Studio;	Compilers	and	Debuggers;	SourceControl	like	CVS,	Subversion,	Git,	Mercurial,	SourceSafe,	Perforce

Cost	Estimation

Methods

External	links

Development	Speed

Introduction

http://www.isbsg.org/
http://www.sw-benchmarking.org/report.php
http://www.forecastingprinciples.com/Software_Estimation/index.html
http://www.forecastingprinciples.com/
http://www.projectmanagementguides.com/TOOLS/project_estimation_tools.html
http://simula.no/research/engineering/projects/best
http://www.methodsandtools.com/archive/archive.php?id=25
http://www.construx.com/Page.aspx?nid=297
http://www.galorath.com/wp/
http://www.stellman-greene.com/ch03
http://www.stellman-greene.com/
http://www.methodsandtools.com/archive/archive.php?id=25
http://www.methodsandtools.com/
http://softwaresurvival.blogspot.com/2006/11/dynamics-of-effort-estimation-in-most.html
http://www.construx.com/Page.aspx?nid=297
http://www.uduko.com/topic_detail/details/47
http://www.gem-up.com/PDF/SK903V1_WP_Estimating.pdf

www.manaraa.com

Testing	Code:	Testing	frameworks	like	JUnit,	FIT,	TestNG,	HTMLUnit;	Coverage	with	Clover,	NCover;	Profiling	tools	like	EclipseProfile,	Netbean’s	Profiler,	JProf,	JProbe

Automation:	Build	tools:	make,	Ant,	Maven,

Documentation:	JavaDoc,	Doxygen,	NDoc;	Wikis

Project	Management,	Bug	Tracking,Continuous	Integration:	Trac,	Bugzilla,	Mantis;	CruiseControl,	Hudson

Re-engineering:	Decompiler:	JAD;	Obfuscators
Some	of	these	tools	we	have	talked	about	before,	but	some	we	still	need	to	learn	about.

Computer-aided	software	engineering	(CASE)	is	the	scientific	application	of	a	set	of	tools	and	methods	to	a	software	system	which	is	meant
to	 result	 in	 high-quality,	 defect-free,	 and	 maintainable	 software	 products.[1]	 It	 also	 refers	 to	 methods	 for	 the	 development	 of	 information	 systems
together	with	automated	tools	that	can	be	used	in	the	software	development	process.[2]

The	 term	 "computer-aided	 software	 engineering"	 (CASE)	 can	 refer	 to	 the	 software	 used	 for	 the	 automated	 development	 of	 systems	 software,	 i.e.,
computer	 code.	 The	 CASE	 functions	 include	 analysis,	 design,	 and	 programming.	 CASE	 tools	 automate	 methods	 for	 designing,	 documenting,	 and
producing	structured	computer	code	in	the	desired	programming	language.

CASE	software	supports	the	software	process	activities	such	as	requirement	engineering,	design,	program	development	and	testing.	Therefore,	CASE
tools	include	design	editors,	data	dictionaries,	compilers,	debuggers,	system	building	tools,	etc.

CASE	also	refers	to	the	methods	dedicated	to	an	engineering	discipline	for	the	development	of	information	system	using	automated	tools.

CASE	is	mainly	used	for	the	development	of	quality	software	which	will	perform	effectively.

The	ISDOS	project	at	the	University	of	Michigan	initiated	a	great	deal	of	interest	in	the	whole	concept	of	using	computer	systems	to	help	analysts	in	the	very	difficult	process	of	analysing
requirements	and	developing	systems.	Several	papers	by	Daniel	Teichroew	fired	a	whole	generation	of	enthusiasts	with	the	potential	of	automated	systems	development.	His	PSL/PSA	tool
was	a	CASE	tool	although	it	predated	the	term.	His	insights	into	the	power	of	meta-meta-models	was	inspiring,	particularly	to	a	former	student,	Dr.	Hasan	Sayani,	currently	Professor,
Program	Director	at	University	of	Maryland	University	College.

Another	major	thread	emerged	as	a	logical	extension	to	the	DBMS	directory.	By	extending	the	range	of	meta-data	held,	the	attributes	of	an	application	could	be	held	within	a	dictionary
and	used	at	runtime.	This	 "active	dictionary"	became	the	precursor	to	the	more	modern	"model	driven	execution"	(MDE)	capability.	However,	 the	active	dictionary	did	not	provide	a
graphical	representation	of	any	of	the	meta-data.	It	was	the	linking	of	the	concept	of	a	dictionary	holding	analysts'	meta-data,	as	derived	from	the	use	of	an	integrated	set	of	techniques,
together	with	the	graphical	representation	of	such	data	that	gave	rise	to	the	earlier	versions	of	I-CASE.

The	term	CASE	was	originally	coined	by	software	company	Nastec	Corporation	of	Southfield,	Michigan	in	1982	with	their	original	integrated	graphics	and	text	editor	GraphiText,	which
also	was	the	first	microcomputer-based	system	to	use	hyperlinks	to	cross-reference	text	strings	in	documents—an	early	forerunner	of	today's	web	page	link.	GraphiText's	successor	product,
DesignAid,	was	the	first	microprocessor-based	tool	to	logically	and	semantically	evaluate	software	and	system	design	diagrams	and	build	a	data	dictionary.

Under	the	direction	of	Albert	F.	Case,	Jr.	vice	president	for	product	management	and	consulting,	and	Vaughn	Frick,	director	of	product	management,	the	DesignAid	product	suite	was
expanded	to	support	analysis	of	a	wide	range	of	structured	analysis	and	design	methodologies,	notably	Ed	Yourdon	and	Tom	DeMarco,	Chris	Gane	&	Trish	Sarson,	Ward-Mellor	(real-
time)	SA/SD	and	Warnier-Orr	(data	driven).

The	next	entrant	into	the	market	was	Excelerator	from	Index	Technology	in	Cambridge,	Mass.	While	DesignAid	ran	on	Convergent	Technologies	and	later	Burroughs	Ngen	networked
microcomputers,	 Index	 launched	 Excelerator	 on	 the	 IBM	PC/AT	 platform.	While,	 at	 the	 time	 of	 launch,	 and	 for	 several	 years,	 the	 IBM	 platform	 did	 not	 support	 networking	 or	 a
centralized	database	as	did	the	Convergent	Technologies	or	Burroughs	machines,	the	allure	of	IBM	was	strong,	and	Excelerator	came	to	prominence.	Hot	on	the	heels	of	Excelerator	were	a
rash	 of	 offerings	 from	 companies	 such	 as	 Knowledgeware	 (James	 Martin,	 Fran	 Tarkenton	 and	 Don	 Addington),	 Texas	 Instrument's	 IEF	 and	 Accenture's	 FOUNDATION	 toolset
(METHOD/1,	DESIGN/1,	INSTALL/1,	FCP).

CASE	tools	were	at	their	peak	in	the	early	1990s.	At	the	time	IBM	had	proposed	AD/Cycle,	which	was	an	alliance	of	software	vendors	centered	around	IBM's	Software	repository	using
IBM	DB2	in	mainframe	and	OS/2:

The	application	development	tools	can	be	from	several	sources:	from	IBM,	from	vendors,	and	from	the	customers	themselves.	IBM	has	entered	into	relationships	with	Bachman
Information	Systems,	Index	Technology	Corporation,	and	Knowledgeware,	Inc.	wherein	selected	products	from	these	vendors	will	be	marketed	through	an	IBM	complementary
marketing	program	to	provide	offerings	that	will	help	to	achieve	complete	life-cycle	coverage.[3]

With	the	decline	of	the	mainframe,	AD/Cycle	and	the	Big	CASE	tools	died	off,	opening	the	market	for	the	mainstream	CASE	tools	of	today.	Nearly	all	of	the	leaders	of	the	CASE	market
of	the	early	1990s	ended	up	being	purchased	by	Computer	Associates,	including	IEW,	IEF,	ADW,	Cayenne,	and	Learmonth	&	Burchett	Management	Systems	(LBMS).

Alfonso	Fuggetta	classified	CASE	into	3	categories:[4]

1.	 Tasks	support	only	specific	tasks	in	the	software	process.
2.	 Workbenches	support	only	one	or	a	few	activities.
3.	 Environments	support	(a	large	part	of)	the	software	process.
Workbenches	and	environments	are	generally	built	as	collections	of	tools.	Tools	can	therefore	be	either	stand	alone	products	or	components	of	workbenches	and	environments.

CASE	tools	are	a	class	of	software	that	automate	many	of	the	activities	involved	in	various	life	cycle	phases.	For	example,	when	establishing	the	functional	requirements	of	a	proposed

Modelling	and	Case	Tools

Overview

History

Supporting	software

Tools

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-370
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-371
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-ADC_SAaA-372
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-AF_93-373

www.manaraa.com

CASE	tools	are	a	class	of	software	that	automate	many	of	the	activities	involved	in	various	life	cycle	phases.	For	example,	when	establishing	the	functional	requirements	of	a	proposed
application,	prototyping	tools	can	be	used	to	develop	graphic	models	of	application	screens	to	assist	end	users	to	visualize	how	an	application	will	look	after	development.	Subsequently,
system	 designers	 can	 use	 automated	 design	 tools	 to	 transform	 the	 prototyped	 functional	 requirements	 into	 detailed	 design	 documents.	 Programmers	 can	 then	 use	 automated	 code
generators	to	convert	the	design	documents	 into	code.	Automated	tools	can	be	used	collectively,	as	mentioned,	or	 individually.	For	example,	prototyping	tools	could	be	used	to	define
application	 requirements	 that	 get	 passed	 to	 design	 technicians	who	 convert	 the	 requirements	 into	 detailed	 designs	 in	 a	 traditional	manner	 using	 flowcharts	 and	narrative	 documents,
without	the	assistance	of	automated	design	software.[5]

Existing	CASE	tools	can	be	classified	along	4	different	dimensions:

1.	 Life-cycle	support
2.	 Integration	dimension
3.	 Construction	dimension
4.	 Knowledge-based	CASE	dimension[6]

Let	us	take	the	meaning	of	these	dimensions	along	with	their	examples	one	by	one:

Life-Cycle	Based	CASE	Tools

This	dimension	classifies	CASE	Tools	on	the	basis	of	the	activities	they	support	in	the	information	systems	life	cycle.	They	can	be	classified	as	Upper	or	Lower	CASE	tools.

Upper	CASE	Tools	support	strategic	planning	and	construction	of	concept-level	products	and	ignore	the	design	aspect.	They	support	traditional	diagrammatic	languages	such	as	ER
diagrams,	Data	flow	diagram,	Structure	charts,	Decision	Trees,	Decision	tables,	etc.
Lower	CASE	Tools	concentrate	on	the	back	end	activities	of	the	software	life	cycle,	such	as	physical	design,	debugging,	construction,	testing,	component	integration,	maintenance,
reengineering	and	reverse	engineering.

Integration	dimension

Three	main	CASE	Integration	dimensions	have	been	proposed:[7]

1.	 CASE	Framework
2.	 ICASE	Tools
3.	 Integrated	Project	Support	Environment(IPSE)

Workbenches	integrate	several	CASE	tools	into	one	application	to	support	specific	software-process	activities.	Hence	they	achieve:

a	homogeneous	and	consistent	interface	(presentation	integration).
easy	invocation	of	tools	and	tool	chains	(control	integration).
access	to	a	common	data	set	managed	in	a	centralized	way	(data	integration).

CASE	workbenches	can	be	further	classified	into	following	8	classes:[4]

1.	 Business	planning	and	modeling
2.	 Analysis	and	design
3.	 User-interface	development
4.	 Programming
5.	 Verification	and	validation
6.	 Maintenance	and	reverse	engineering
7.	 Configuration	management
8.	 Project	management

An	environment	is	a	collection	of	CASE	tools	and	workbenches	that	supports	the	software	process.	CASE	environments	are	classified	based	on	the	focus/basis	of	integration

1.	 Toolkits
2.	 Language-centered
3.	 Integrated
4.	 Fourth	generation
5.	 Process-centered

Workbenches

Environments

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-FFIEC08-374
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-375
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-376
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-AF_93-373

www.manaraa.com

Toolkits

Toolkits	 are	 loosely	 integrated	 collections	 of	 products	 easily	 extended	 by	 aggregating	 different	 tools	 and	 workbenches.	 Typically,	 the	 support	 provided	 by	 a	 toolkit	 is	 limited	 to
programming,	 configuration	management	 and	 project	management.	 And	 the	 toolkit	 itself	 is	 environments	 extended	 from	 basic	 sets	 of	 operating	 system	 tools,	 for	 example,	 the	 Unix
Programmer's	Work	Bench	and	the	VMS	VAX	Set.	In	addition,	toolkits'	loose	integration	requires	user	to	activate	tools	by	explicit	invocation	or	simple	control	mechanisms.	The	resulting
files	are	unstructured	and	could	be	in	different	format,	therefore	the	access	of	file	from	different	tools	may	require	explicit	file	format	conversion.	However,	since	the	only	constraint	for
adding	a	new	component	is	the	formats	of	the	files,	toolkits	can	be	easily	and	incrementally	extended.[4]

Language-centered

The	environment	itself	 is	written	in	the	programming	language	for	which	it	was	developed,	thus	enabling	users	to	reuse,	customize	and	extend	the	environment.	Integration	of	code	in
different	languages	is	a	major	issue	for	language-centered	environments.	Lack	of	process	and	data	integration	is	also	a	problem.	The	strengths	of	these	environments	include	good	level	of
presentation	and	control	integration.	Interlisp,	Smalltalk,	Rational,	and	KEE	are	examples	of	language-centered	environments.

Integrated

These	environments	achieve	presentation	integration	by	providing	uniform,	consistent,	and	coherent	tool	and	workbench	interfaces.	Data	 integration	is	achieved	through	the	
concept:	 they	 have	 a	 specialized	 database	 managing	 all	 information	 produced	 and	 accessed	 in	 the	 environment.	 Examples	 of	 integrated	 environment	 are	 IBM	 AD/Cycle	 and	 DEC
Cohesion.[4]

Fourth-generation

Fourth-generation	environments	were	the	first	integrated	environments.	They	are	sets	of	tools	and	workbenches	supporting	the	development	of	a	specific	class	of	program:	electronic	data
processing	and	business-oriented	applications.	 In	general,	 they	 include	programming	tools,	 simple	configuration	management	 tools,	document	handling	 facilities	and,	 sometimes,	a	code
generator	to	produce	code	in	lower	level	languages.	Informix	4GL,	and	Focus	fall	into	this	category.[4]

Process-centered

Environments	in	this	category	focus	on	process	integration	with	other	integration	dimensions	as	starting	points.	A	process-centered	environment	operates	by	interpreting	a	process	model
created	by	specialized	tools.	They	usually	consist	of	tools	handling	two	functions:

Process-model	execution
Process-model	production

Examples	are	East,	Enterprise	II,	Process	Wise,	Process	Weaver,	and	Arcadia.[4]

All	aspects	of	the	software	development	life	cycle	can	be	supported	by	software	tools,	and	so	the	use	of	tools	from	across	the	spectrum	can,	arguably,	be	described	as	CASE;	from	project
management	software	through	tools	for	business	and	functional	analysis,	system	design,	code	storage,	compilers,	translation	tools,	test	software,	and	so	on.

However,	tools	that	are	concerned	with	analysis	and	design,	and	with	using	design	information	to	create	parts	(or	all)	of	the	software	product,	are	most	frequently	thought	of	as	CASE
tools.	CASE	applied,	for	instance,	to	a	database	software	product,	might	normally	involve:

Modeling	business	/	real-world	processes	and	data	flow
Development	of	data	models	in	the	form	of	entity-relationship	diagrams
Development	of	process	and	function	descriptions

Common	CASE	risks	and	associated	controls	include:

Inadequate	standardization:	Linking	CASE	tools	from	different	vendors	(design	tool	from	Company	X,	programming	tool	from	Company	Y)	may	be	difficult	if	the	products	do	not	use
standardized	code	structures	and	data	classifications.	File	formats	can	be	converted,	but	usually	not	economically.	Controls	include	using	tools	from	the	same	vendor,	or	using	tools
based	on	standard	protocols	and	insisting	on	demonstrated	compatibility.	Additionally,	if	organizations	obtain	tools	for	only	a	portion	of	the	development	process,	they	should	consider
acquiring	them	from	a	vendor	that	has	a	full	line	of	products	to	ensure	future	compatibility	if	they	add	more	tools.
Unrealistic	expectations:	Organizations	often	implement	CASE	technologies	to	reduce	development	costs.	Implementing	CASE	strategies	usually	involves	high	start-up	costs.	Generally,
management	must	be	willing	to	accept	a	long-term	payback	period.	Controls	include	requiring	senior	managers	to	define	their	purpose	and	strategies	for	implementing	CASE
technologies.[5]

Slow	implementation:	Implementing	CASE	technologies	can	involve	a	significant	change	from	traditional	development	environments.	Typically,	organizations	should	not	use	CASE
tools	the	first	time	on	critical	projects	or	projects	with	short	deadlines	because	of	the	lengthy	training	process.	Additionally,	organizations	should	consider	using	the	tools	on	smaller,
less	complex	projects	and	gradually	implementing	the	tools	to	allow	more	training	time.[5]

Weak	repository	controls:	Failure	to	adequately	control	access	to	CASE	repositories	may	result	in	security	breaches	or	damage	to	the	work	documents,	system	designs,	or	code	modules
stored	in	the	repository.	Controls	include	protecting	the	repositories	with	appropriate	access,	version,	and	backup	controls.

Applications

Risks	and	associated	controls

References

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-AF_93-373
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-AF_93-373
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-AF_93-373
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-AF_93-373
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-FFIEC08-374
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-FFIEC08-374

www.manaraa.com

1.	 Kuhn,	D.L	(1989).	"Selecting	and	effectively	using	a	computer	aided	software	engineering	tool".	Annual	Westinghouse	computer	symposium;	6–7	Nov	1989;	Pittsburgh,	PA	(U.S.);	DOE
Project.

2.	 P.	Loucopoulos	and	V.	Karakostas	(1995).	System	Requirements	Engineering.	McGraw-Hill.
3.	 "AD/Cycle	strategy	and	architecture",	IBM	Systems	Journal,	Vol	29,	NO	2,	1990;	p.	172.
4.	 Alfonso	Fuggetta	(December	1993).	"A	classification	of	CASE	technology".	Computer	26	(12):	25–38.	doi:10.1109/2.247645
http://www2.computer.org/portal/web/csdl/abs/mags/co/1993/12/rz025abs.htm.	Retrieved	2009-03-14.

5.	 Software	Development	Techniques	(http://www.ffiec.gov/ffiecinfobase/booklets/d_a/10.html).	In:	FFIEC	InfoBase
6.	 Software	Engineering:	Tools,	Principles	and	Techniques	by	Sangeeta	Sabharwal,	Umesh	Publications
7.	 Evans	R.	Rock.	Case	Analyst	Workbenches:	A	Detailed	Product	Evaluation.	Volume	1,	pp.	229–242	by

CASE	Tools	(http://case-tools.org/)	A	CASE	tools'	community	with	comments,	tags,	forums,	articles,	reviews,	etc.
CASE	tool	index	(http://www.unl.csi.cuny.edu/faqs/software-enginering/tools.html)	-	A	comprehensive	list	of	CASE	tools
UML	CASE	tools	(http://www.objectsbydesign.com/tools/umltools_byProduct.html)	-	A	comprehensive	list	of	UML	CASE	tools.	Mainly	have	resources	to	choose	a	UML	CASE	tool
and	some	related	to	MDA	CASE	Tools.

A	compiler	is	a	computer	program	(or	set	of	programs)	that	transforms	source	code	written	in	a	programming	language	(the	
another	 computer	 language	 (the	 target	 language,	 often	 having	 a	 binary	 form	 known	 as	 object	 code).	 The	 most	 common	 reason	 for	 wanting	 to
transform	source	code	is	to	create	an	executable	program.

The	name	"compiler"	 is	primarily	used	 for	programs	that	translate	source	code	 from	a	high-level	programming	 language	to	a	 lower	 level	 language
(e.g.,	assembly	language	or	machine	code).	If	the	compiled	program	can	run	on	a	computer	whose	CPU	or	operating	system	is	different	from	the	one
on	which	the	compiler	runs,	the	compiler	is	known	as	a	cross-compiler.	A	program	that	translates	from	a	low	level	language	to	a	higher	level	one	is	a
decompiler.	A	program	that	translates	between	high-level	languages	is	usually	called	a	 language	translator,	source	to	source	translator
converter.	A	language	rewriter	is	usually	a	program	that	translates	the	form	of	expressions	without	a	change	of	language.

A	compiler	 is	 likely	to	perform	many	or	all	of	the	 following	operations:	 lexical	analysis,	preprocessing,	parsing,	semantic	analysis	(Syntax-directed
translation),	code	generation,	and	code	optimization.

Program	faults	caused	by	incorrect	compiler	behavior	can	be	very	difficult	to	track	down	and	work	around;	therefore,	compiler	implementors	invest	a
lot	of	time	ensuring	the	correctness	of	their	software.

The	term	compiler-compiler	is	sometimes	used	to	refer	to	a	parser	generator,	a	tool	often	used	to	help	create	the	lexer	and	parser.

Software	 for	early	computers	was	primarily	written	 in	assembly	 language	 for	many	years.	Higher	 level	programming	 languages	were	not	 invented
until	 the	 benefits	 of	 being	 able	 to	 reuse	 software	 on	 different	 kinds	 of	 CPUs	 started	 to	 become	 significantly	 greater	 than	 the	 cost	 of	 writing	 a
compiler.	The	very	limited	memory	capacity	of	early	computers	also	created	many	technical	problems	when	implementing	a	compiler.

Towards	the	end	of	the	1950s,	machine-independent	programming	languages	were	first	proposed.	Subsequently,	several	experimental	compilers	were
developed.	The	first	compiler	was	written	by	Grace	Hopper,	in	1952,	for	the	A-0	programming	language.	The	FORTRAN	team	led	by	John	Backus
at	IBM	is	generally	credited	as	having	introduced	the	first	complete	compiler	in	1957.	COBOL	was	an	early	language	to	be	compiled	on	multiple	architectures,	in	1960.

In	many	application	domains	the	 idea	of	using	a	higher	 level	 language	quickly	caught	on.	Because	of	 the	expanding	 functionality	supported	by	newer	programming	 languages	and	the
increasing	complexity	of	computer	architectures,	compilers	have	become	more	and	more	complex.

Early	compilers	were	written	in	assembly	language.	The	first	self-hosting	compiler	—	capable	of	compiling	its	own	source	code	in	a	high-level	language	—	was	created	for	Lisp	by	Tim	Hart
and	Mike	Levin	at	MIT	in	1962.[2]	Since	the	1970s	it	has	become	common	practice	to	implement	a	compiler	in	the	language	it	compiles,	although	both	Pascal	and	C	have	been	popular
choices	for	implementation	language.	Building	a	self-hosting	compiler	is	a	bootstrapping	problem—the	first	such	compiler	for	a	language	must	be	compiled	either	by	a	compiler	written	in	a
different	language,	or	(as	in	Hart	and	Levin's	Lisp	compiler)	compiled	by	running	the	compiler	in	an	interpreter.

Compiler	 construction	 and	 compiler	 optimization	 are	 taught	 at	 universities	 and	 schools	 as	 part	 of	 the	 computer	 science	 curriculum.	 Such	 courses	 are	 usually	 supplemented	with	 the
implementation	of	a	compiler	for	an	educational	programming	language.	A	well-documented	example	is	Niklaus	Wirth's	PL/0	compiler,	which	Wirth	used	to	teach	compiler	construction	in
the	1970s.[3]	In	spite	of	its	simplicity,	the	PL/0	compiler	introduced	several	influential	concepts	to	the	field:

1.	 Program	development	by	stepwise	refinement	(also	the	title	of	a	1971	paper	by	Wirth)[4]

2.	 The	use	of	a	recursive	descent	parser
3.	 The	use	of	EBNF	to	specify	the	syntax	of	a	language
4.	 A	code	generator	producing	portable	P-code
5.	 The	use	of	T-diagrams[5]	in	the	formal	description	of	the	bootstrapping	problem

Compilers	 enabled	 the	development	of	programs	 that	are	machine-independent.	Before	 the	development	of	FORTRAN	(FORmula	TRANslator),	 the	 first	higher-level	 language,	 in	 the

External	links

Compiler

History

Compilers	in	education

Compilation

http://www2.computer.org/portal/web/csdl/abs/mags/co/1993/12/rz025abs.htm
https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2F2.247645
http://www2.computer.org/portal/web/csdl/abs/mags/co/1993/12/rz025abs.htm
http://www.ffiec.gov/ffiecinfobase/booklets/d_a/10.html
http://case-tools.org/
http://www.unl.csi.cuny.edu/faqs/software-enginering/tools.html
http://www.objectsbydesign.com/tools/umltools_byProduct.html
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-378
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-379
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-380
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-381

www.manaraa.com

Compilers	 enabled	 the	development	of	programs	 that	are	machine-independent.	Before	 the	development	of	FORTRAN	(FORmula	TRANslator),	 the	 first	higher-level	 language,	 in	 the
1950s,	machine-dependent	assembly	language	was	widely	used.	While	assembly	language	produces	more	reusable	and	relocatable	programs	than	machine	code	on	the	same	architecture,	it
has	to	be	modified	or	rewritten	if	the	program	is	to	be	executed	on	different	hardware	architecture.

With	the	advance	of	high-level	programming	 languages	 soon	 followed	after	FORTRAN,	such	as	COBOL,	C,	BASIC,	programmers	can	write	machine-independent	 source	programs.	A
compiler	translates	the	high-level	source	programs	into	target	programs	in	machine	languages	for	the	specific	hardwares.	Once	the	target	program	is	generated,	the	user	can	execute	the
program.

Compilers	bridge	source	programs	in	high-level	languages	with	the	underlying	hardware.	A	compiler	requires	1)	determining	the	correctness	of	the	syntax	of	programs,	2)	generating	correct
and	efficient	object	code,	3)	run-time	organization,	and	4)	formatting	output	according	to	assembler	and/or	linker	conventions.	A	compiler	consists	of	three	main	parts:	the	frontend,	the
middle-end,	and	the	backend.

The	frontend	checks	whether	the	program	is	correctly	written	in	terms	of	the	programming	language	syntax	and	semantics.	Here	legal	and	illegal	programs	are	recognized.	Errors	are
reported,	if	any,	in	a	useful	way.	Type	checking	is	also	performed	by	collecting	type	information.	The	frontend	then	generates	an	
processing	by	the	middle-end.

The	middle-end	is	where	optimization	takes	place.	Typical	transformations	for	optimization	are	removal	of	useless	or	unreachable	code,	discovery	and	propagation	of	constant	values,
relocation	of	computation	to	a	 less	 frequently	executed	place	(e.g.,	out	of	a	 loop),	or	specialization	of	computation	based	on	the	context.	The	middle-end	generates	another	IR	for	the
following	backend.	Most	optimization	efforts	are	focused	on	this	part.

The	backend	is	responsible	for	translating	the	IR	from	the	middle-end	into	assembly	code.	The	target	instruction(s)	are	chosen	for	each	IR	instruction.	Variables	are	also	selected	for	the
registers.	Backend	utilizes	 the	hardware	by	 figuring	out	how	to	keep	parallel	FUs	busy,	 filling	delay	 slots,	 and	 so	on.	Although	most	algorithms	 for	optimization	are	 in	NP,	heuristic
techniques	are	well-developed.

One	classification	of	compilers	is	by	the	platform	on	which	their	generated	code	executes.	This	is	known	as	the	target	platform.

A	native	or	hosted	compiler	is	one	which	output	is	intended	to	directly	run	on	the	same	type	of	computer	and	operating	system	that	the	compiler	itself	runs	on.	The	output	of	a	cross
compiler	 is	 designed	 to	 run	 on	 a	 different	 platform.	 Cross	 compilers	 are	 often	 used	 when	 developing	 software	 for	 embedded	 systems	 that	 are	 not	 intended	 to	 support	 a	 software
development	environment.

The	output	of	 a	 compiler	 that	produces	 code	 for	 a	virtual	machine	 (VM)	may	or	may	not	be	 executed	on	 the	 same	platform	as	 the	 compiler	 that	produced	 it.	For	 this	 reason	 such
compilers	are	not	usually	classified	as	native	or	cross	compilers.

Higher-level	 programming	 languages	 are	 generally	 divided	 for	 convenience	 into	 compiled	 languages	 and	 interpreted	 languages.	 However,	 in	 practice	 there	 is	 rarely	 anything	 about	 a
language	that	requires	 it	to	be	exclusively	compiled	or	exclusively	 interpreted,	although	it	 is	possible	to	design	languages	that	rely	on	re-interpretation	at	run	time.	The	categorization
usually	reflects	the	most	popular	or	widespread	 implementations	of	a	 language	—	for	 instance,	BASIC	is	sometimes	called	an	 interpreted	 language,	and	C	a	compiled	one,	despite	the
existence	of	BASIC	compilers	and	C	interpreters.

Modern	trends	toward	just-in-time	compilation	and	bytecode	interpretation	at	times	blur	the	traditional	categorizations	of	compilers	and	interpreters.

Some	 language	 specifications	 spell	 out	 that	 implementations	must	 include	 a	 compilation	 facility;	 for	 example,	 Common	 Lisp.	 However,	 there	 is	 nothing	 inherent	 in	 the	 definition	 of
Common	Lisp	 that	 stops	 it	 from	being	 interpreted.	Other	 languages	 have	 features	 that	 are	 very	 easy	 to	 implement	 in	 an	 interpreter,	 but	make	writing	 a	 compiler	much	harder;	 for
example,	APL,	SNOBOL4,	and	many	scripting	 languages	allow	programs	 to	construct	arbitrary	 source	 code	at	 runtime	with	 regular	 string	operations,	and	 then	execute	 that	 code	by
passing	it	to	a	special	evaluation	function.	To	implement	these	features	in	a	compiled	language,	programs	must	usually	be	shipped	with	a	runtime	library	that	includes	a	version	of	the
compiler	itself.

The	output	of	some	compilers	may	target	hardware	at	a	very	low	level,	for	example	a	Field	Programmable	Gate	Array	(FPGA)	or	structured	Application-specific	integrated	circuit	(ASIC).
Such	compilers	are	said	to	be	hardware	compilers	or	synthesis	tools	because	the	source	code	they	compile	effectively	control	the	final	configuration	of	the	hardware	and	how	it	operates;	the
output	of	the	compilation	are	not	instructions	that	are	executed	in	sequence	-	only	an	interconnection	of	transistors	or	lookup	tables.	For	example,	XST	is	the	Xilinx	Synthesis	Tool	used
for	configuring	FPGAs.	Similar	tools	are	available	from	Altera,	Synplicity,	Synopsys	and	other	vendors.

In	the	early	days,	the	approach	taken	to	compiler	design	used	to	be	directly	affected	by	the	complexity	of	the	processing,	the	experience	of	the	person(s)	designing	it,	and	the	resources
available.

A	compiler	for	a	relatively	simple	language	written	by	one	person	might	be	a	single,	monolithic	piece	of	software.	When	the	source	language	is	large	and	complex,	and	high	quality	output
is	required,	the	design	may	be	split	into	a	number	of	relatively	independent	phases.	Having	separate	phases	means	development	can	be	parceled	up	into	small	parts	and	given	to	different
people.	It	also	becomes	much	easier	to	replace	a	single	phase	by	an	improved	one,	or	to	insert	new	phases	later	(e.g.,	additional	optimizations).

The	 division	 of	 the	 compilation	 processes	 into	 phases	 was	 championed	 by	 the	 Production	 Quality	 Compiler-Compiler	 Project	 (PQCC)	 at	 Carnegie	 Mellon	 University.	 This	 project
introduced	the	terms	front	end,	middle	end,	and	back	end.

All	but	the	smallest	of	compilers	have	more	than	two	phases.	However,	these	phases	are	usually	regarded	as	being	part	of	the	front	end	or	the	back	end.	The	point	at	which	these	two	
meet	is	open	to	debate.	The	front	end	is	generally	considered	to	be	where	syntactic	and	semantic	processing	takes	place,	along	with	translation	to	a	lower	level	of	representation	(than
source	code).

The	middle	end	is	usually	designed	to	perform	optimizations	on	a	form	other	than	the	source	code	or	machine	code.	This	source	code/machine	code	independence	is	intended	to	enable
generic	optimizations	to	be	shared	between	versions	of	the	compiler	supporting	different	languages	and	target	processors.

The	 back	 end	 takes	 the	 output	 from	 the	middle.	 It	may	 perform	more	 analysis,	 transformations	 and	 optimizations	 that	 are	 for	 a	 particular	 computer.	Then,	 it	 generates	 code	 for	 a
particular	processor	and	OS.

This	front-end/middle/back-end	approach	makes	it	possible	to	combine	front	ends	for	different	languages	with	back	ends	for	different	CPUs.	Practical	examples	of	this	approach	are	the
GNU	Compiler	Collection,	LLVM,	and	the	Amsterdam	Compiler	Kit,	which	have	multiple	front-ends,	shared	analysis	and	multiple	back-ends.

The	structure	of	a	compiler

Compiler	output

Compiled	versus	interpreted	languages

Hardware	compilation

Compiler	construction

One-pass	versus	multi-pass	compilers

www.manaraa.com

Classifying	compilers	by	number	of	passes	has	its	background	in	the	hardware	resource	limitations	of	computers.	Compiling	involves	performing	lots	of	work	and	early	computers	did	not
have	enough	memory	to	contain	one	program	that	did	all	of	this	work.	So	compilers	were	split	up	into	smaller	programs	which	each	made	a	pass	over	the	source	(or	some	representation	of
it)	performing	some	of	the	required	analysis	and	translations.

The	ability	to	compile	in	a	single	pass	has	classically	been	seen	as	a	benefit	because	it	simplifies	the	job	of	writing	a	compiler	and	one	pass	compilers	generally	compile	faster	than	multi-
pass	compilers.	Thus,	partly	driven	by	the	resource	 limitations	of	early	systems,	many	early	 languages	were	specifically	designed	so	that	they	could	be	compiled	 in	a	single	pass	(e.g.,
Pascal).

In	some	cases	the	design	of	a	language	feature	may	require	a	compiler	to	perform	more	than	one	pass	over	the	source.	For	instance,	consider	a	declaration	appearing	on	line	20	of	the	source
which	affects	the	translation	of	a	statement	appearing	on	line	10.	In	this	case,	the	first	pass	needs	to	gather	information	about	declarations	appearing	after	statements	that	they	affect,	with
the	actual	translation	happening	during	a	subsequent	pass.

The	disadvantage	of	compiling	in	a	single	pass	is	that	it	is	not	possible	to	perform	many	of	the	sophisticated	optimizations	needed	to	generate	high	quality	code.	It	can	be	difficult	to	count
exactly	how	many	passes	an	optimizing	compiler	makes.	For	instance,	different	phases	of	optimization	may	analyse	one	expression	many	times	but	only	analyse	another	expression	once.

Splitting	a	compiler	up	into	small	programs	is	a	technique	used	by	researchers	interested	in	producing	provably	correct	compilers.	Proving	the	correctness	of	a	set	of	small	programs	often
requires	less	effort	than	proving	the	correctness	of	a	larger,	single,	equivalent	program.

While	the	typical	multi-pass	compiler	outputs	machine	code	from	its	final	pass,	there	are	several	other	types:

A	"source-to-source	compiler"	is	a	type	of	compiler	that	takes	a	high	level	language	as	its	input	and	outputs	a	high	level	language.	For	example,	an	automatic	parallelizing	compiler	will
frequently	take	in	a	high	level	language	program	as	an	input	and	then	transform	the	code	and	annotate	it	with	parallel	code	annotations	(e.g.	OpenMP)	or	language	constructs	(e.g.
Fortran's	DOALL	statements).
Stage	compiler	that	compiles	to	assembly	language	of	a	theoretical	machine,	like	some	Prolog	implementations

This	Prolog	machine	is	also	known	as	the	Warren	Abstract	Machine	(or	WAM).
Bytecode	compilers	for	Java,	Python,	and	many	more	are	also	a	subtype	of	this.

Just-in-time	compiler,	used	by	Smalltalk	and	Java	systems,	and	also	by	Microsoft	.NET's	Common	Intermediate	Language	(CIL)

Applications	are	delivered	in	bytecode,	which	is	compiled	to	native	machine	code	just	prior	to	execution.

The	front	end	analyzes	the	source	code	to	build	an	internal	representation	of	the	program,	called	the	intermediate	representation	or	
mapping	each	symbol	in	the	source	code	to	associated	information	such	as	location,	type	and	scope.	This	is	done	over	several	phases,	which	includes	some	of	the	following:

1.	 Line	reconstruction.	Languages	which	strop	their	keywords	or	allow	arbitrary	spaces	within	identifiers	require	a	phase	before	parsing,	which	converts	the	input	character	sequence
to	a	canonical	form	ready	for	the	parser.	The	top-down,	recursive-descent,	table-driven	parsers	used	in	the	1960s	typically	read	the	source	one	character	at	a	time	and	did	not	require	a
separate	tokenizing	phase.	Atlas	Autocode,	and	Imp	(and	some	implementations	of	ALGOL	and	Coral	66)	are	examples	of	stropped	languages	which	compilers	would	have	a	
Reconstruction	phase.

2.	 Lexical	analysis	breaks	the	source	code	text	into	small	pieces	called	tokens.	Each	token	is	a	single	atomic	unit	of	the	language,	for	instance	a	keyword,	identifier	or	symbol	name.	The
token	syntax	is	typically	a	regular	language,	so	a	finite	state	automaton	constructed	from	a	regular	expression	can	be	used	to	recognize	it.	This	phase	is	also	called	lexing	or	scanning,
and	the	software	doing	lexical	analysis	is	called	a	lexical	analyzer	or	scanner.

3.	 Preprocessing.	Some	languages,	e.g.,	C,	require	a	preprocessing	phase	which	supports	macro	substitution	and	conditional	compilation.	Typically	the	preprocessing	phase	occurs	before
syntactic	or	semantic	analysis;	e.g.	in	the	case	of	C,	the	preprocessor	manipulates	lexical	tokens	rather	than	syntactic	forms.	However,	some	languages	such	as	Scheme	support	macro
substitutions	based	on	syntactic	forms.

4.	 Syntax	analysis	involves	parsing	the	token	sequence	to	identify	the	syntactic	structure	of	the	program.	This	phase	typically	builds	a	parse	tree,	which	replaces	the	linear	sequence	of
tokens	with	a	tree	structure	built	according	to	the	rules	of	a	formal	grammar	which	define	the	language's	syntax.	The	parse	tree	is	often	analyzed,	augmented,	and	transformed	by	later
phases	in	the	compiler.

5.	 Semantic	analysis	is	the	phase	in	which	the	compiler	adds	semantic	information	to	the	parse	tree	and	builds	the	symbol	table.	This	phase	performs	semantic	checks	such	as	type
checking	(checking	for	type	errors),	or	object	binding	(associating	variable	and	function	references	with	their	definitions),	or	definite	assignment	(requiring	all	local	variables	to	be
initialized	before	use),	rejecting	incorrect	programs	or	issuing	warnings.	Semantic	analysis	usually	requires	a	complete	parse	tree,	meaning	that	this	phase	logically	follows	the	parsing
phase,	and	logically	precedes	the	code	generation	phase,	though	it	is	often	possible	to	fold	multiple	phases	into	one	pass	over	the	code	in	a	compiler	implementation.

The	term	back	end	 is	 sometimes	confused	with	code	generator	because	of	 the	overlapped	 functionality	of	generating	assembly	code.	Some	 literature	uses	
generic	analysis	and	optimization	phases	in	the	back	end	from	the	machine-dependent	code	generators.

The	main	phases	of	the	back	end	include	the	following:

1.	 Analysis:	This	is	the	gathering	of	program	information	from	the	intermediate	representation	derived	from	the	input.	Typical	analyses	are	data	flow	analysis	to	build	use-define	chains,
dependence	analysis,	alias	analysis,	pointer	analysis,	escape	analysis	etc.	Accurate	analysis	is	the	basis	for	any	compiler	optimization.	The	call	graph	and	control	flow	graph	are	usually
also	built	during	the	analysis	phase.

2.	 Optimization:	the	intermediate	language	representation	is	transformed	into	functionally	equivalent	but	faster	(or	smaller)	forms.	Popular	optimizations	are	inline	expansion,	dead	code

Front	end

Back	end

www.manaraa.com

elimination,	constant	propagation,	loop	transformation,	register	allocation	and	even	automatic	parallelization.
3.	 Code	generation:	the	transformed	intermediate	language	is	translated	into	the	output	language,	usually	the	native	machine	language	of	the	system.	This	involves	resource	and	storage
decisions,	such	as	deciding	which	variables	to	fit	into	registers	and	memory	and	the	selection	and	scheduling	of	appropriate	machine	instructions	along	with	their	associated	addressing
modes	(see	also	Sethi-Ullman	algorithm).

Compiler	analysis	is	the	prerequisite	for	any	compiler	optimization,	and	they	tightly	work	together.	For	example,	dependence	analysis	is	crucial	for	loop	transformation.

In	addition,	the	scope	of	compiler	analysis	and	optimizations	vary	greatly,	from	as	small	as	a	basic	block	to	the	procedure/function	level,	or	even	over	the	whole	program	(interprocedural
optimization).	Obviously,	a	compiler	can	potentially	do	a	better	job	using	a	broader	view.	But	that	broad	view	is	not	free:	large	scope	analysis	and	optimizations	are	very	costly	in	terms	of
compilation	time	and	memory	space;	this	is	especially	true	for	interprocedural	analysis	and	optimizations.

Interprocedural	analysis	and	optimizations	are	common	in	modern	commercial	compilers	from	HP,	IBM,	SGI,	Intel,	Microsoft,	and	Sun	Microsystems.	The	open	source	GCC	was	criticized
for	a	 long	time	for	 lacking	powerful	 interprocedural	optimizations,	but	 it	 is	changing	in	this	respect.	Another	open	source	compiler	with	full	analysis	and	optimization	infrastructure	 is
Open64,	which	is	used	by	many	organizations	for	research	and	commercial	purposes.

Due	to	the	extra	time	and	space	needed	for	compiler	analysis	and	optimizations,	some	compilers	skip	them	by	default.	Users	have	to	use	compilation	options	to	explicitly	tell	the	compiler
which	optimizations	should	be	enabled.

Compiler	 correctness	 is	 the	branch	of	 software	 engineering	 that	deals	with	 trying	 to	 show	that	a	 compiler	behaves	according	 to	 its	 language	 specification.
include	developing	the	compiler	using	formal	methods	and	using	rigorous	testing	(often	called	compiler	validation)	on	an	existing	compiler.

Assembly	language	is	a	type	of	low-level	language	and	a	program	that	compiles	it	is	more	commonly	known	as	an	assembler

A	program	that	translates	from	a	low	level	language	to	a	higher	level	one	is	a	decompiler.

A	program	that	 translates	between	high-level	 languages	 is	usually	 called	a	 language	 translator,	 source	 to	 source	 translator
usually	applied	to	translations	that	do	not	involve	a	change	of	language.

Every	year,	the	European	Joint	Conferences	on	Theory	and	Practice	of	Software	(ETAPS)	sponsors	the	
(CC),	with	papers	from	both	the	academic	and	industrial	sectors.[6]

1.	 "IP:	The	World's	First	COBOL	Compilers".	interesting-people.org.	12	June	1997.	http://www.interesting-people.org/archives/interesting-people/199706/msg00011.html
2.	 T.	Hart	and	M.	Levin.	"The	New	Compiler,	AIM-39	-	CSAIL	Digital	Archive	-	Artificial	Intelligence	Laboratory	Series"
publications/pdf/AIM-039.pdf.

3.	 "The	PL/0	compiler/interpreter".	http://www.246.dk/pl0.html.
4.	 "The	ACM	Digital	Library".	http://www.acm.org/classics/dec95/.
5.	 T	diagrams	were	first	introduced	for	describing	bootstrapping	and	cross-compiling	compilers	in	McKeeman	et	al.	
before	that	with	his	UNCOL	in	1958,	to	which	Bratman	added	in	1961:	H.	Bratman,	“An	alternate	form	of	the	´UNCOL	diagram´“,	Comm.	ACM	4	(March	1961)	3,	p.	142.	Later	on,
others,	including	P.D.	Terry,	gave	an	explanation	and	usage	of	T-diagrams	in	their	textbooks	on	the	topic	of	compiler	construction.	Cf.	Terry,	1997,	
ompilers/cha03g.htm).	T-diagrams	are	also	now	used	to	describe	client-server	interconnectivity	on	the	World	Wide	Web:	cf.	Patrick	Closhen,	et	al.	1997:	
Language	to	Illustrate	WWW	Technology	(http://pu.rbg.informatik.tu-darmstadt.de/docs/HJH-19990217-etal-T-diagrams.doc)
Germany

6.	 ETAPS	(http://www.etaps.org/)	-	European	Joint	Conferences	on	Theory	and	Practice	of	Software.	Cf.	"CC"	(Compiler	Construction)	subsection.

Compiler	textbook	references	(http://www.informatik.uni-trier.de/~ley/db/books/compiler/index.html)	A	collection	of	references	to	mainstream	Compiler	Construction	Textbooks
Aho,	Alfred	V.;	Sethi,	Ravi;	and	Ullman,	Jeffrey	D.,	Compilers:	Principles,	Techniques	and	Tools	ISBN	0-201-10088-6
/0,4096,0201100886,00.html).	Also	known	as	“The	Dragon	Book.”
Allen,	Frances	E.,	"A	History	of	Language	Processor	Technology	in	IBM"	(http://www.research.ibm.com/journal/rd/255/ibmrd2505Q.pdf)
v.25,	no.5,	September	1981.
Allen,	Randy;	and	Kennedy,	Ken,	Optimizing	Compilers	for	Modern	Architectures,	Morgan	Kaufmann	Publishers,	2001.	
Appel,	Andrew	Wilson

Modern	Compiler	Implementation	in	Java,	2nd	edition.	Cambridge	University	Press,	2002.	ISBN	0-521-82060-X
Modern	Compiler	Implementation	in	ML	(http://books.google.com/books?id=8APOYafUt-oC&printsec=frontcover)

Bornat,	Richard,	Understanding	and	Writing	Compilers:	A	Do	It	Yourself	Guide	(http://www.cs.mdx.ac.uk/staffpages/r_bornat/books/compiling.pdf)
ISBN	0-333-21732-2

Compiler	correctness

Related	techniques

International	conferences	and	organizations

Notes

References

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-382
http://www.interesting-people.org/archives/interesting-people/199706/msg00011.html
http://www.interesting-people.org/archives/interesting-people/199706/msg00011.html
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-039.pdf
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-039.pdf
http://www.246.dk/pl0.html
http://www.246.dk/pl0.html
http://www.acm.org/classics/dec95/
http://www.acm.org/classics/dec95/
http://scifac.ru.ac.za/compilers/cha03g.htm
http://pu.rbg.informatik.tu-darmstadt.de/docs/HJH-19990217-etal-T-diagrams.doc
http://www.etaps.org/
http://www.informatik.uni-trier.de/~ley/db/books/compiler/index.html
https://en.wikibooks.org/wiki/Special:BookSources/0-201-10088-6
http://www.aw.com/catalog/academic/product/0,4096,0201100886,00.html
http://www.research.ibm.com/journal/rd/255/ibmrd2505Q.pdf
https://en.wikibooks.org/wiki/Special:BookSources/0-521-82060-X
http://books.google.com/books?id=8APOYafUt-oC&printsec=frontcover
http://www.cs.mdx.ac.uk/staffpages/r_bornat/books/compiling.pdf
https://en.wikibooks.org/wiki/Special:BookSources/0-333-21732-2

www.manaraa.com

Cooper,	Keith	D.,	and	Torczon,	Linda,	Engineering	a	Compiler,	Morgan	Kaufmann,	2004,	ISBN	1-55860-699-8.
Leverett;	Cattel;	Hobbs;	Newcomer;	Reiner;	Schatz;	Wulf,	An	Overview	of	the	Production	Quality	Compiler-Compiler	Project
McKeeman,	William	Marshall;	Horning,	James	J.;	Wortman,	David	B.,	A	Compiler	Generator	(http://www.cs.toronto.edu/XPL/)
0-13-155077-2
Muchnick,	Steven,	Advanced	Compiler	Design	and	Implementation	(http://books.google.com/books?id=Pq7pHwG1_OkC&printsec=frontcover&source=gbs_summary_r&cad=0)
Morgan	Kaufmann	Publishers,	1997.	ISBN	1-55860-320-4
Scott,	Michael	Lee,	Programming	Language	Pragmatics	(http://books.google.com/books?id=4LMtA2wOsPcC&printsec=frontcover&dq=Programming+Language+Pragmatics)
Morgan	Kaufmann,	2005,	2nd	edition,	912	pages.	ISBN	0-12-633951-1	(The	author's	site	on	this	book	(http://www.cs.rochester.edu/~scott/pragmatics/)
Srikant,	Y.	N.;	Shankar,	Priti,	The	Compiler	Design	Handbook:	Optimizations	and	Machine	Code	Generation	(http://books.google.com/books?
id=0K_jIsgyNpoC&printsec=frontcover),	CRC	Press,	2003.	ISBN	0-8493-1240-X
Terry,	Patrick	D.,	Compilers	and	Compiler	Generators:	An	Introduction	with	C++	(http://scifac.ru.ac.za/compilers/conts.htm)
1-85032-298-8,
Wirth,	Niklaus,	Compiler	Construction	(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.3774&rep=rep1&type=pdf)
pages.	Revised	November	2005.

The	comp.compilers	newsgroup	and	RSS	feed	(http://compilers.iecc.com/)
Hardware	compilation	mailing	list	(http://www.jiscmail.ac.uk/lists/hwcomp.html)
Practical	introduction	to	compiler	construction	using	flex	and	yacc	(http://www.onyxbits.de/content/blog/patrick/introduction-compiler-construction-using-flex-and-yacc)
Book	"Basics	of	Compiler	Design	(http://www.diku.dk/hjemmesider/ansatte/torbenm/Basics/)"	by	Torben	Ægidius	Mogensen

A	debugger	or	debugging	tool	is	a	computer	program	that	is	used	to	test	and	debug	other	programs	(the	"target"	program).	The	code	to	be	examined	might	alternatively	be	running
on	an	instruction	set	simulator	(ISS),	a	technique	that	allows	great	power	in	its	ability	to	halt	when	specific	conditions	are	encountered	but	which	will	typically	be	somewhat	slower	than
executing	the	code	directly	on	the	appropriate	(or	the	same)	processor.	Some	debuggers	offer	two	modes	of	operation	-	full	or	partial	simulation,	to	limit	this	impact.

A	"crash"	happens	when	the	program	cannot	normally	continue	because	of	a	programming	bug.	For	example,	the	program	might	have	tried	to	use	an	 instruction	not	available	on	the
current	version	of	the	CPU	or	attempted	to	access	unavailable	or	protected	memory.	When	the	program	"crashes"	or	reaches	a	preset	condition,	the	debugger	typically	shows	the	position
in	the	original	code	if	 it	 is	a	source-level	debugger	or	symbolic	debugger,	commonly	now	seen	in	 integrated	development	environments.	If	 it	 is	a	
machine-language	debugger	it	shows	the	line	in	the	disassembly	(unless	it	also	has	online	access	to	the	original	source	code	and	can	display	the	appropriate	section	of	code	from	the
assembly	or	compilation).

Typically,	 debuggers	 also	 offer	more	 sophisticated	 functions	 such	 as	 running	 a	 program	 step	 by	 step	 (single-stepping
program	to	examine	the	current	state)	at	some	event	or	specified	 instruction	by	means	of	a	breakpoint,	and	tracking	the	values	of	some	variables.	Some	debuggers	have	the	ability	to
modify	the	state	of	the	program	while	it	is	running,	rather	than	merely	to	observe	it.	It	may	also	be	possible	to	continue	execution	at	a	different	location	in	the	program	to	bypass	a	crash
or	logical	error.

The	importance	of	a	good	debugger	cannot	be	overstated.	Indeed,	the	existence	and	quality	of	such	a	tool	for	a	given	language	and	platform	can	often	be	the	deciding	factor	in	its	use,	even
if	another	language/platform	is	better-suited	to	the	task.[citation	needed].	The	absence	of	a	debugger,	having	once	been	accustomed	to	using	one,	has	been	said	to	"make	you	feel	like	a
blind	man	 in	a	dark	 room	 looking	 for	a	black	cat	 that	 isn’t	 there".[1]	However,	 software	can	(and	often	does)	behave	differently	 running	under	a	debugger	 than	normally,	due	 to	 the
inevitable	changes	the	presence	of	a	debugger	will	make	to	a	software	program's	 internal	timing.	As	a	result,	even	with	a	good	debugging	tool,	 it	 is	often	very	difficult	to	track	down
runtime	problems	in	complex	multi-threaded	or	distributed	systems.

The	same	functionality	which	makes	a	debugger	useful	for	eliminating	bugs	allows	it	to	be	used	as	a	software	cracking	tool	to	evade	copy	protection,	digital	rights	management,	and	other
software	protection	features.	It	often	also	makes	it	useful	as	a	general	testing	verification	tool	test	coverage	and	performance	analyzer,	especially	if	instruction	path	lengths	are	shown.

Most	current	mainstream	debugging	engines,	such	as	gdb	and	dbx	provide	console-based	command	line	interfaces.	Debugger	front-ends	are	popular	extensions	to	debugger	engines	that
provide	 IDE	 integration,	 program	 animation,	 and	 visualization	 features.	 Some	 early	 mainframe	 debuggers	 such	 as	 IBM	OLIVER	 (CICS	 interactive	 test/debug)	 and	 SIMON	 (Batch
Interactive	test/debug)	provided	this	same	functionality	for	the	IBM	System/360	and	later	operating	systems,	as	long	ago	as	the	1970s.

Some	debuggers	operate	on	a	single	specific	language	while	others	can	handle	multiple	languages	transparently.	For	example	if	the	main	target	program	is	written	in	COBOL	but	CALLs
Assembler	subroutines	and	also	PL/1	subroutines,	the	debugger	may	dynamically	switch	modes	to	accommodate	the	changes	in	language	as	they	occur.

Some	debuggers	also	incorporate	memory	protection	to	avoid	storage	violations	such	as	buffer	overflow.	This	may	be	extremely	important	in	transaction	processing	environments	where
memory	is	dynamically	allocated	from	memory	'pools'	on	a	task	by	task	basis.

Most	modern	microprocessors	have	at	least	one	of	these	features	in	their	CPU	design	to	make	debugging	easier:

hardware	support	for	single-stepping	a	program,	such	as	the	trap	flag.
An	instruction	set	that	meets	the	Popek	and	Goldberg	virtualization	requirements	makes	it	easier	to	write	debugger	software	that	runs	on	the	same	CPU	as	the	software	being
debugged;	such	a	CPU	can	execute	the	inner	loops	of	the	program	under	test	at	full	speed,	and	still	remain	under	the	control	of	the	debugger.
In-System	Programming	allows	an	external	hardware	debugger	to	re-program	a	system	under	test	(for	example,	adding	or	removing	instruction	breakpoints).	Many	systems	with	such

External	links

Language	dependency

Memory	protection

Hardware	support	for	debugging

https://en.wikibooks.org/wiki/Special:BookSources/1-55860-699-8
http://www.cs.toronto.edu/XPL/
https://en.wikibooks.org/wiki/Special:BookSources/0-13-155077-2
http://books.google.com/books?id=Pq7pHwG1_OkC&printsec=frontcover&source=gbs_summary_r&cad=0
https://en.wikibooks.org/wiki/Special:BookSources/1-55860-320-4
http://books.google.com/books?id=4LMtA2wOsPcC&printsec=frontcover&dq=Programming+Language+Pragmatics
https://en.wikibooks.org/wiki/Special:BookSources/0-12-633951-1
http://www.cs.rochester.edu/~scott/pragmatics/
http://books.google.com/books?id=0K_jIsgyNpoC&printsec=frontcover
https://en.wikibooks.org/wiki/Special:BookSources/0-8493-1240-X
http://scifac.ru.ac.za/compilers/conts.htm
https://en.wikibooks.org/wiki/Special:BookSources/1-85032-298-8
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.3774&rep=rep1&type=pdf
http://compilers.iecc.com/
http://www.jiscmail.ac.uk/lists/hwcomp.html
http://www.onyxbits.de/content/blog/patrick/introduction-compiler-construction-using-flex-and-yacc
http://www.diku.dk/hjemmesider/ansatte/torbenm/Basics/
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-383

www.manaraa.com

ISP	support	also	have	other	hardware	debug	support.
Hardware	support	for	code	and	data	breakpoints,	such	as	address	comparators	and	data	value	comparators	or,	with	considerably	more	work	involved,	page	fault	hardware.
JTAG	access	to	hardware	debug	interfaces	such	as	those	on	ARM	architecture	processors	or	using	the	Nexus	command	set.	Processors	used	in	embedded	systems	typically	have
extensive	JTAG	debug	support.
Microcontrollers	with	as	few	as	six	pins	need	to	use	low	pin-count	substitutes	for	JTAG,	such	as	BDM,	Spy-Bi-Wire,	or	DebugWire	on	the	Atmel	AVR.	DebugWire,	for	example,	uses
bidirectional	signaling	on	the	RESET	pin.

AppPuncher	Debugger	—	for	debugging	Rich	Internet	Applications
AQtime
CA/EZTEST	—	was	a	CICS	interactive	test/debug	software	package
CharmDebug	(http://charm.cs.uiuc.edu/research/parallel_debug/)	—	a	Debugger	for	Charm++
CodeView
DBG	—	a	PHP	Debugger	and	Profiler
dbx
DDD	(Data	Display	Debugger)
Distributed	Debugging	Tool	(Allinea	DDT)
DDTLite	—	Allinea	DDTLite	for	Visual	Studio	2008
DEBUG	—	the	built-in	debugger	of	DOS	and	Microsoft	Windows
Debugger	for	MySQL	(http://www.mydebugger.com)
Opera	Dragonfly
Dynamic	debugging	technique	(DDT),	and	its	octal	counterpart	Octal	Debugging	Technique
Eclipse
Embedded	System	Debug	Plug-in	for	Eclipse
FusionDebug
gDEBugger	(http://www.gremedy.com/gDEBuggerCL.php)	OpenGL,	OpenGL	ES	and	OpenCL	Debugger	and	Profiler.	For	Windows,	Linux,	Mac	OS	X	and	iPhone
GNU	Debugger	(GDB),	GNU	Binutils
Intel	Debugger	(IDB)
Insight
Parasoft	Insure++
iSYSTEM	—	In	circuit	debugger	for	Embedded	Systems
Interactive	Disassembler	(IDA	Pro)
Java	Platform	Debugger	Architecture
Jinx	—	a	whole-system	debugger	for	heisenbugs.	It	works	transparently	as	a	device	driver.
JSwat	—	open-source	Java	debugger
LLDB
MacsBug
Nemiver	—	graphical	C/C++	Debugger	for	the	GNOME	desktop	environment
OLIVER	(CICS	interactive	test/debug)	-	a	GUI	equipped	instruction	set	simulator	(ISS)
OllyDbg
FlexTracer	-	shareware	debugger	for	SQL	statements
Omniscient	Debugger	—	Forward	and	backward	debugger	for	Java
pydbg
IBM	Rational	Purify
RealView	Debugger	—	Commercial	debugger	produced	for	and	designed	by	ARM
sdb
SIMMON	(Simulation	Monitor)
SIMON	(Batch	Interactive	test/debug)	—	a	GUI	equipped	Instruction	Set	Simulator	for	batch

List	of	debuggers

http://charm.cs.uiuc.edu/research/parallel_debug/
http://www.mydebugger.com/
http://www.gremedy.com/gDEBuggerCL.php

www.manaraa.com

SoftICE
TimeMachine	—	Forward	and	backward	debugger	designed	by	Green	Hills	Software
TotalView
TRACE32	—	In	circuit	debugger	for	Embedded	Systems
Turbo	Debugger
Ups	—	C,	Fortran	source	level	debugger
Valgrind
VB	Watch	Debugger	—	debugger	for	Visual	Basic	6.0
Microsoft	Visual	Studio	Debugger
WinDbg
Xdebug	—	PHP	debugger	and	profiler

Some	of	the	most	capable	and	popular	debuggers	only	implement	a	simple	command	line	interface	(CLI)	—	often	to	maximize	portability	and	minimize	resource	consumption.	Debugging
via	 a	 graphical	 user	 interface	 (GUI)	 can	 be	 considered	 easier	 and	more	 productive	 though.	This	 is	 the	 reason	 for	GUI	 debugger	 front-ends,	 that	 allow	 users	 to	monitor	 and	 control
subservient	CLI-only	debuggers	via	graphical	user	interface.	Some	GUI	debugger	front-ends	are	designed	to	be	compatible	with	a	variety	of	CLI-only	debuggers,	while	others	are	targeted
at	one	specific	debugger.

Many	Integrated	development	environments	come	with	integrated	debuggers	(or	front-ends	to	standard	debuggers).

Many	Eclipse	perspectives,	e.g.	the	Java	Development	Tools	(JDT)	[13]	(http://www.eclipse.org/jdt/index.php)
DDD	is	the	standard	front-end	from	the	GNU	Project.	It	is	a	complex	tool	that	works	with	most	common	debuggers	(GDB,	jdb,	Python	debugger,	Perl	debugger,	Tcl,	and	others)
natively	or	with	some	external	programs	(for	PHP).
GDB	(the	GNU	debugger)	GUI

Emacs	—	Emacs	editor	with	built	in	support	for	the	GNU	Debugger	acts	as	the	frontend.
KDbg	—	Part	of	the	KDE	development	tools.
Nemiver	—	A	GDB	frontend	that	integrates	well	in	the	GNOME	desktop	environment.
xxgdb	—	X-window	frontend	for	GDB	and	dbx	debugger.
Qt	Creator	—	multi-platform	frontend	for	GDB	(debugging	example	(http://doc.qt.nokia.com/qtcreator-2.0/creator-debugging-example.html)
cgdb	(http://cgdb.sourceforge.net/)	—	ncurses	terminal	program	that	mimics	vim	key	mapping.
ccdebug	(http://ccdebug.sourceforge.net/)—	A	graphical	GDB	frontend	using	the	Qt	toolkit.
Padb	—	has	a	parallel	front-end	to	GDB	allowing	it	to	target	parallel	applications.
Allinea	Distributed	Debugging	Tool	—	a	parallel	and	distributed	front-end	to	a	modified	version	of	GDB.
Xcode	—	contains	a	GDB	front-end	as	well.
SlickEdit	—	contains	a	GDB	front-end	as	well.
Eclipse	C/C++	Development	Tools	(CDT)	[14]	(http://www.eclipse.org/cdt/)	—	includes	visual	debugging	tools	based	on	GDB.

Jonathan	B.	Rosenberg,	How	Debuggers	Work:	Algorithms,	Data	Structures,	and	Architecture,	John	Wiley	&	Sons,	

1.	 http://www.berniecode.com/blog/2007/03/08/how-to-debug-javascript-with-visual-web-developer-express/

Debugging	tools	(http://www.dmoz.org//Computers/Programming/Development_Tools/Debugging/)	at	DMOZ
Debugging	Tools	for	Windows	(http://www.microsoft.com/whdc/devtools/debugging/)
OpenRCE:	Various	Debugger	Resources	and	Plug-ins	(http://www.openrce.org)
Parallel	computing	development	and	debugging	tools	(http://www.dmoz.org//Computers/Parallel_Computing/Programming/Tools//)

An	integrated	development	environment	(IDE)	(also	known	as	integrated	design	environment	or	
that	provides	comprehensive	facilities	to	computer	programmers	for	software	development.	An	IDE	normally	consists	of:

a	source	code	editor

Debugger	front-ends

List	of	debugger	front-ends

References

External	links

IDE

http://www.eclipse.org/jdt/index.php
http://doc.qt.nokia.com/qtcreator-2.0/creator-debugging-example.html
http://cgdb.sourceforge.net/
http://ccdebug.sourceforge.net/
http://www.eclipse.org/cdt/
http://www.berniecode.com/blog/2007/03/08/how-to-debug-javascript-with-visual-web-developer-express/
http://www.dmoz.org//Computers/Programming/Development_Tools/Debugging/
https://en.wikipedia.org/wiki/DMOZ
http://www.microsoft.com/whdc/devtools/debugging/
http://www.openrce.org/
http://www.dmoz.org//Computers/Parallel_Computing/Programming/Tools//

www.manaraa.com

a	compiler	and/or	an	interpreter
build	automation	tools
a	debugger

Sometimes	a	version	control	system	and	various	tools	are	integrated	to	simplify	the	construction	of	a	GUI.	Many	modern	IDEs	also	have	a	class	browser,
an	object	inspector,	and	a	class	hierarchy	diagram,	for	use	with	object-oriented	software	development.[1]

IDEs	are	designed	to	maximize	programmer	productivity	by	providing	tightly-knit	components	with	similar	user	 interfaces.	This	should	mean	that	the
programmer	has	to	do	less	mode	switching	versus	using	discrete	development	programs.	However,	because	an	IDE	is	a	complicated	piece	of	software	by	its
very	nature,	this	higher	productivity	only	occurs	after	a	lengthy	learning	process.

Typically	an	IDE	is	dedicated	to	a	specific	programming	language,	allowing	a	feature	set	that	most	closely	matches	the	programming	paradigms	of	the
language.	However,	there	are	some	multiple-language	IDEs,	such	as	Eclipse,	ActiveState	Komodo,	recent	versions	of	NetBeans,	Microsoft	Visual	Studio,
WinDev,	and	Xcode.

IDEs	 typically	 present	 a	 single	 program	 in	 which	 all	 development	 is	 done.	 This	 program	 typically	 provides	many	 features	 for	 authoring,	modifying,
compiling,	deploying	and	debugging	software.	The	aim	is	to	abstract	the	configuration	necessary	to	piece	together	command	line	utilities	 in	a	cohesive
unit,	 which	 theoretically	 reduces	 the	 time	 to	 learn	 a	 language,	 and	 increases	 developer	 productivity.	 It	 is	 also	 thought	 that	 the	 tight	 integration	 of
development	tasks	can	further	increase	productivity.	For	example,	code	can	be	compiled	while	being	written,	providing	instant	feedback	on	syntax	errors.
While	most	modern	 IDEs	are	graphical,	 IDEs	 in	use	before	 the	advent	of	windowing	systems	(such	as	Microsoft	Windows	or	X11)	were	 text-based,	using	 function	keys	or	hotkeys	 to
perform	various	tasks	(Turbo	Pascal	is	a	common	example).	This	contrasts	with	software	development	using	unrelated	tools,	such	as	vi,	GCC	or	make.

IDEs	initially	became	possible	when	developing	via	a	console	or	terminal.	Early	systems	could	not	support	one,	since	programs	were	prepared	using	flowcharts,
entering	programs	with	punched	cards	(or	paper	tape,	etc.)	before	submitting	them	to	a	compiler.	Dartmouth	BASIC	was	the	first	language	to	be	created	with	an
IDE	(and	was	also	the	first	to	be	designed	for	use	while	sitting	in	front	of	a	console	or	terminal).	Its	IDE	(part	of	the	Dartmouth	Time	Sharing	System)	was
command-based,	 and	 therefore	 did	 not	 look	 much	 like	 the	 menu-driven,	 graphical	 IDEs	 prevalent	 today.	 However	 it	 integrated	 editing,	 file	 management,
compilation,	debugging	and	execution	in	a	manner	consistent	with	a	modern	IDE.

Maestro	I	is	a	product	from	Softlab	Munich	and	was	the	world's	first	integrated	development	environment
I	was	installed	for	22,000	programmers	worldwide.	Until	1989,	6,000	installations	existed	in	the	Federal	Republic	of	Germany.	Maestro	I
was	arguably	the	world	leader	in	this	field	during	the	1970s	and	1980s.	Today	one	of	the	last	Maestro	I	can	be	found	in	the	Museum	of
Information	Technology	at	Arlington.

One	of	the	first	IDEs	with	a	plug-in	concept	was	Softbench.	In	1995	Computerwoche	commented	that	the	use	of	an	IDE	was	not	well
received	by	developers	since	it	would	fence	in	their	creativity.

Visual	 programming	 is	 a	 usage	 scenario	 in	which	 an	 IDE	 is	 generally	 required.	Visual	 IDEs	 allow	 users	 to	 create	 new	 applications	 by	moving	 programming
building	blocks	or	code	nodes	to	create	flowcharts	or	structure	diagrams	that	are	then	compiled	or	interpreted.	These	flowcharts	often	are	based	on	the	Unified	Modeling	Language.

This	interface	has	been	popularized	with	the	Lego	Mindstorms	system,	and	is	being	actively	pursued	by	a	number	of	companies	wishing	to	capitalize	on	the	power	of	custom	browsers	like
those	found	at	Mozilla.	KTechlab	supports	flowcode	and	is	a	popular	opensource	IDE	and	Simulator	for	developing	software	for	microcontrollers.	Visual	programming	is	also	responsible	for
the	power	of	distributed	programming	(cf.	LabVIEW	and	EICASLAB	software).	An	early	visual	programming	system,	Max,	was	modelled	after	analog	synthesizer	design	and	has	been
used	to	develop	real-time	music	performance	software	since	the	1980s.	Another	early	example	was	Prograph,	a	dataflow-based	system	originally	developed	for	the	Macintosh.	The	graphical
programming	environment	"Grape"	is	used	to	program	qfix	robot	kits.

This	approach	is	also	used	in	specialist	software	such	as	Openlab,	where	the	end	users	want	the	flexibility	of	a	full	programming	language,	without	the	traditional	learning	curve	associated
with	one.

An	open	source	visual	programming	system	is	Mindscript,	which	has	extended	functionality	for	cryptology,	database	interfacing,

Some	IDEs	support	multiple	languages,	such	as	Eclipse	or	NetBeans,	both	based	on	Java,	or	MonoDevelop,	based	on	C#.

Support	 for	alternative	 languages	 is	often	provided	by	plugins,	allowing	them	to	be	 installed	on	the	 same	 IDE	at	 the	 same	time.	For	example,	Eclipse	and	Netbeans	have	plugins	 for
C/C++,	Ada,	Perl,	Python,	Ruby,	and	PHP,	among	other	languages.

Many	 Unix	 programmers	 argue	 that	 traditional	 command-line	 POSIX	 tools	 constitute	 an	 IDE,Template:Who	 though	 one	 with	 a	 different	 style	 of	 interface	 and	 under	 the	 Unix
environment.	Many	programmers	still	use	makefiles	and	their	derivatives.	Also,	many	Unix	programmers	use	Emacs	or	Vim,	which	integrates	support	for	many	of	the	standard	Unix	build
tools.	Data	Display	Debugger	is	intended	to	be	an	advanced	graphical	front-end	for	many	text-based	debugger	standard	tools.

On	the	various	Microsoft	Windows	platforms,	command-line	tools	for	development	are	seldom	used.	Accordingly,	there	are	many	commercial	and	non-commercial	solutions,	however	each
has	a	different	design	commonly	creating	 incompatibilities.	Most	major	compiler	vendors	 for	Windows	still	provide	 free	copies	of	 their	command-line	tools,	 including	Microsoft	 (Visual
C++,	Platform	SDK,	Microsoft	.NET	Framework	SDK,	nmake	utility),	Embarcadero	Technologies	(bcc32	compiler,	make	utility).

Additionally,	the	free	software	GNU	tools	(gcc,	gdb,	GNU	make)	are	available	on	many	platforms,	including	Windows	etc.

IDEs	have	always	been	popular	on	the	Apple	Macintosh's	Mac	OS,	dating	back	to	Macintosh	Programmer's	Workshop,	Turbo	Pascal,	THINK	Pascal	and	THINK	C	environments	in	the
mid-1980s.	Currently	Mac	OS	X	programmers	can	choose	between	limited	IDEs,	including	native	IDEs	like	Xcode,	older	IDEs	like	CodeWarrior,	and	open-source	tools,	such	as	Eclipse	and
Netbeans.	ActiveState	Komodo	is	a	proprietary	IDE	supported	on	the	Mac	OS.

Overview

History

Keyboard	Maestro
[2] Topics

Visual	programming

Language	support

Attitudes	across	different	computing	platforms

References

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-384
https://en.wikibooks.org/w/index.php?title=Template:Who&action=edit&redlink=1
https://commons.wikimedia.org/wiki/File:Maestro-Keyboard.jpg
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-385

www.manaraa.com

1.	 Dana	Nourie	(2005-03-24).	"Getting	Started	with	an	Integrated	Development	Environment".	Sun	Microsystems,	Inc.
Retrieved	2008-09-09.

2.	 Image	credit:	Museum	of	Information	Technology	at	Arlington	(http://mit-a.com/fourphase.shtml)
3.	 "Interaktives	Programmieren	als	Systems-Schlager"	(http://www.computerwoche.de/heftarchiv/1975/47/1205421/)

A	graphical	user	interface	builder	(or	GUI	builder),	also	known	as	GUI	designer,	is	a	software	development	tool	that	simplifies	the	creation	of	GUIs	by	allowing	the	designer
to	 arrange	widgets	 using	 a	 drag-and-drop	WYSIWYG	editor.	Without	 a	GUI	builder,	 a	GUI	must	 be	 built	 by	manually	 specifying	 each	widget's	 parameters	 in	 code,	with	 no	 visual
feedback	until	the	program	is	run.

User	interfaces	are	commonly	programmed	using	an	event-driven	architecture,	so	GUI	builders	also	simplify	creating	event-driven	code.	This	supporting	code	connects	widgets	with	the
outgoing	and	incoming	events	that	trigger	the	functions	providing	the	application	logic.

AutoIt
Axure	RP
Cocoa/OpenStep

Interface	Builder
Embedded	Wizard	a	commercial	development	tool	focussed	on	user	interface	applications	for	embedded	systems.
Fast,	Light	Toolkit	(FLTK)

FLUID
GNUstep

Gorm
GEM

Resource	construction	set
Interface	by	Shift	Computer
ORCS	(Otto's	RCS)
K-Resource
Resource	Master
Annabel	Junior
WERCS	by	HiSoft

GTK+

Glade	Interface	Designer
Gazpacho
Gideon	Designer

GUI	Builder	(http://gui-builder.com)
Intrinsics
Justinmind	Prototyper

Motif

Builder	Xcessory	(http://www.ics.com/products/motif/guibuilders/bxpro/index.html)
Easymotif
ixbuild
UIMX	(http://www.ics.com/products/motif/guibuilders/uimx/index.html)
X-Designer

LucidChart
Object	Pascal

fpGUI	UI	Designer	(included	with	fpGUI	Toolkit)

GUI	Builder

List	of	GUI	builders

Programs

http://java.sun.com/developer/technicalArticles/tools/intro.html
http://mit-a.com/fourphase.shtml
http://www.computerwoche.de/heftarchiv/1975/47/1205421/
http://gui-builder.com/
http://www.ics.com/products/motif/guibuilders/bxpro/index.html
http://www.ics.com/products/motif/guibuilders/uimx/index.html

www.manaraa.com

OpenWindows

guide	(GUI	builder)
Pencil	Project
Qt

Qt	Designer	(http://web.archive.org/web/20080512225850/http://trolltech.com/products/qt/features/tools/designer)
Scaleform
Tk	(framework)

GUI	Builder	(http://spectcl.sourceforge.net/ko3-guib-docs/komodo-doc-guibuilder.html)
ActiveState	Komodo
Visual	Tcl	(http://vtcl.sourceforge.net/)	(dead	project)
PureTkGUI	(http://puretkgui.sourceforge.net/)

Wavemaker	open	source,	browser-based	development	platform	for	Ajax	development	based	on	Dojo,	Spring,	Hibernate
Windows	Presentation	Foundation

Microsoft	Expression	Blend
wxWidgets

wxGlade
wxFormBuilder	(http://wiki.wxformbuilder.org/)
wxDesigner	(http://www.wxdesigner-software.de/)

XForms	(toolkit)

fdesign
Crank	Storyboard	Suite

Storyboard	Designer	(http://www.cranksoftware.com/products/crank_storyboard_designer.php)

NetBeans	GUI	design	tool,	formerly	known	as	Matisse	(http://netbeans.org/features/java/swing.html).
Visual	Editor	(http://www.eclipse.org/vep/)	-	A	free	(Eclipse	Public	License)	plugin	for	Eclipse	on	MS	Windows	and	Linux	(GTK	and	Motif).
Jigloo	(http://www.cloudgarden.com/jigloo/)	-	A	free	for	non-commercial	use	plugin	for	Eclipse	on	MS	Windows,	Linux	(gtk)	and	Mac	OSX.
WxSmith	(http://wiki.codeblocks.org/index.php?title=WxSmith_plugin)	-	A	Code::Blocks	plug-in	for	RAD	editing	of	wxWidgets	applications.
Himalia	Guilder	(http://www.himalia.net/)	(Only	for	Visual	Studio	2005;	no	release	since	December	'06.)

ActiveState	Komodo
Adobe	Flash	Builder
Anjuta
Ares
CodeGear	RAD	Studio	(former	Borland	Development	Studio)
Clarion
Code::Blocks	(http://www.codeblocks.org/)
Gambas
Just	BASIC/Liberty	BASIC
KDevelop
Lazarus
Microsoft	Visual	Studio
MonoDevelop
MSEide+MSEgui	(http://sourceforge.net/projects/mseide-msegui/)

IDE	Plugins

List	of	development	environments

IDEs	with	GUI	builders

http://web.archive.org/web/20080512225850/http://trolltech.com/products/qt/features/tools/designer
http://spectcl.sourceforge.net/ko3-guib-docs/komodo-doc-guibuilder.html
http://vtcl.sourceforge.net/
http://puretkgui.sourceforge.net/
http://wiki.wxformbuilder.org/
http://www.wxdesigner-software.de/
http://www.cranksoftware.com/products/crank_storyboard_designer.php
http://netbeans.org/features/java/swing.html
http://www.eclipse.org/vep/
http://www.cloudgarden.com/jigloo/
http://wiki.codeblocks.org/index.php?title=WxSmith_plugin
http://www.himalia.net/
http://www.codeblocks.org/
http://sourceforge.net/projects/mseide-msegui/

www.manaraa.com

NetBeans
Qt	Creator
REALbasic
SharpDevelop
Softwell	Maker
WinDev
wxDev-C++
Oracle	Application	Express

Revision	control,	 also	 known	 as	version	control	 or	 source	control	 (and	 an	 aspect	 of	 software	configuration	management
management	of	changes	to	documents,	programs,	and	other	 information	stored	as	computer	 files.	 It	 is	most	commonly	used	 in	software	development,	where	a
team	of	people	may	change	the	same	files.	Changes	are	usually	identified	by	a	number	or	letter	code,	termed	the	"revision	number",	"revision	level",	or	simply
"revision".	For	example,	an	initial	set	of	files	is	"revision	1".	When	the	first	change	is	made,	the	resulting	set	is	"revision	2",	and	so	on.	Each	revision	is	associated
with	a	timestamp	and	the	person	making	the	change.	Revisions	can	be	compared,	restored,	and	with	some	types	of	files,	merged.

Version	control	systems	(VCSs	–	singular	VCS)	most	commonly	run	as	stand-alone	applications,	but	revision	control	is	also	embedded	in	various	types	of	software
such	as	word	processors	(e.g.,	Microsoft	Word,	OpenOffice.org	Writer,	KWord,	Pages,	etc.),	spreadsheets	(e.g.,	Microsoft	Excel,	OpenOffice.org	Calc,	KSpread,
Numbers,	 etc.),	 and	 in	 various	 content	management	 systems	 (e.g.,	Drupal,	 Joomla,	WordPress).	 Integrated	 revision	 control	 is	 a	 key	 feature	 of	wiki	 software
packages	such	as	MediaWiki,	DokuWiki,	TWiki	etc.	In	wikis,	revision	control	allows	for	the	ability	to	revert	a	page	to	a	previous	revision,	which	is	critical	for
allowing	editors	to	track	each	other's	edits,	correct	mistakes,	and	defend	public	wikis	against	vandalism	and	spam.

Software	tools	for	revision	control	are	essential	for	the	organization	of	multi-developer	projects.[1]

Revision	 control	 developed	 from	 formalized	 processes	 based	 on	 tracking	 revisions	 of	 early	 blueprints	 or	 bluelines.	 This	 system	 of	 control	 implicitly	 allowed
returning	 to	any	earlier	 state	of	 the	design,	 for	 cases	 in	which	an	engineering	dead-end	was	 reached	 in	 the	development	of	 the	design.	Likewise,	 in	 computer
software	engineering,	revision	control	 is	any	practice	that	tracks	and	provides	control	over	changes	to	source	code.	Software	developers	sometimes	use	revision
control	 software	 to	maintain	 documentation	 and	 configuration	 files	 as	 well	 as	 source	 code.	 Also,	 version	 control	 is	 widespread	 in	 business	 and	 law.	 Indeed,
"contract	 redline"	 and	 "legal	 blackline"	 are	 some	 of	 the	 earliest	 forms	 of	 revision	 control,[citation	 needed]	 and	 are	 still	 employed	 with	 varying	 degrees	 of
sophistication.	An	 entire	 industry	 has	 emerged	 to	 service	 the	 document	 revision	 control	 needs	 of	 business	 and	 other	 users,	 and	 some	 of	 the	 revision	 control
technology	employed	in	these	circles	is	subtle,	powerful,	and	innovative.	The	most	sophisticated	techniques	are	beginning	to	be	used	for	the	electronic	tracking	of
changes	to	CAD	files	(see	product	data	management),	supplanting	the	"manual"	electronic	implementation	of	traditional	revision	control.

As	teams	design,	develop	and	deploy	software,	 it	 is	common	for	multiple	versions	of	the	same	software	to	be	deployed	in	different	sites	and	for	the	software's
developers	to	be	working	simultaneously	on	updates.	Bugs	or	 features	of	the	software	are	often	only	present	 in	certain	versions	(because	of	the	fixing	of	some
problems	and	the	introduction	of	others	as	the	program	develops).	Therefore,	for	the	purposes	of	locating	and	fixing	bugs,	it	is	vitally	important	to	be	able	to
retrieve	and	run	different	versions	of	the	software	to	determine	in	which	version(s)	the	problem	occurs.	It	may	also	be	necessary	to	develop	two	versions	of	the
software	concurrently	(for	instance,	where	one	version	has	bugs	fixed,	but	no	new	features	(branch),	while	the	other	version	is	where	new	features	are	worked	on
(trunk).

At	the	simplest	level,	developers	could	simply	retain	multiple	copies	of	the	different	versions	of	the	program,	and	label	them	appropriately.	This	simple	approach	has	been	used	on	many
large	software	projects.	While	this	method	can	work,	it	is	inefficient	as	many	near-identical	copies	of	the	program	have	to	be	maintained.	This	requires	a	lot	of	self-discipline	on	the	part	of
developers,	and	often	leads	to	mistakes.	Consequently,	systems	to	automate	some	or	all	of	the	revision	control	process	have	been	developed.

Moreover,	 in	software	development,	legal	and	business	practice	and	other	environments,	 it	has	become	increasingly	common	for	a	single	document	or	snippet	of	code	to	be	edited	by	a
team,	the	members	of	which	may	be	geographically	dispersed	and	may	pursue	different	and	even	contrary	interests.	Sophisticated	revision	control	that	tracks	and	accounts	for	ownership	of
changes	to	documents	and	code	may	be	extremely	helpful	or	even	necessary	in	such	situations.

Revision	control	may	also	track	changes	to	configuration	files,	such	as	those	typically	stored	in	/etc	or	/usr/local/etc
easily	track	changes	made	and	a	way	to	roll	back	to	earlier	versions	should	the	need	arise.

Traditional	revision	control	systems	use	a	centralized	model	where	all	the	revision	control	functions	take	place	on	a	shared	server.	If	two	developers	try	to	change	the	same	file	at	the	same
time,	without	some	method	of	managing	access	the	developers	may	end	up	overwriting	each	other's	work.	Centralized	revision	control	systems	solve	this	problem	in	one	of	two	different
"source	management	models":	file	locking	and	version	merging.

Computer	scientists	speak	of	atomic	operations	if	the	system	is	left	in	a	consistent	state	even	if	the	operation	is	interrupted.	The	
Commits	are	operations	which	tell	the	revision	control	system	you	want	to	make	a	group	of	changes	you	have	been	making	final	and	available	to	all	users.	Not	all	revision	control	systems
have	atomic	commits;	notably,	the	widely-used	CVS	lacks	this	feature.

The	simplest	method	of	preventing	"concurrent	access"	problems	involves	locking	files	so	that	only	one	developer	at	a	time	has	write	access	to	the	central	"repository"	copies	of	those	files.
Once	one	developer	"checks	out"	a	file,	others	can	read	that	file,	but	no	one	else	may	change	that	file	until	that	developer	"checks	in"	the	updated	version	(or	cancels	the	checkout).

File	locking	has	both	merits	and	drawbacks.	It	can	provide	some	protection	against	difficult	merge	conflicts	when	a	user	is	making	radical	changes	to	many	sections	of	a	large	file	(or	group
of	files).	However,	if	the	files	are	left	exclusively	locked	for	too	long,	other	developers	may	be	tempted	to	bypass	the	revision	control	software	and	change	the	files	locally,	leading	to	more
serious	problems.

experiment

Most	version	control	systems	allow	multiple	developers	to	edit	the	same	file	at	the	same	time.	The	first	developer	to	"check	in"	changes	to	the	central	repository	always	succeeds.	The

Source	Control

Overview

Source-management	models

Atomic	operations

File	locking

Version	merging

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-387
https://en.wikibooks.org/wiki/Wikibooks:OR

www.manaraa.com

Most	version	control	systems	allow	multiple	developers	to	edit	the	same	file	at	the	same	time.	The	first	developer	to	"check	in"	changes	to	the	central	repository	always	succeeds.	The
system	may	provide	facilities	to	merge	further	changes	into	the	central	repository,	and	preserve	the	changes	from	the	first	developer	when	other	developers	check	in.

Merging	two	files	can	be	a	very	delicate	operation,	and	usually	possible	only	if	the	data	structure	is	simple,	as	in	text	files.	The	result	of	a	merge	of	two	image	files	might	not	result	in	an
image	 file	at	all.	The	 second	developer	checking	 in	code	will	need	 to	 take	care	with	 the	merge,	 to	make	 sure	 that	 the	changes	are	compatible	and	that	 the	merge	operation	does	not
introduce	 its	own	 logic	errors	within	the	 files.	These	problems	 limit	the	availability	of	automatic	or	semi-automatic	merge	operations	mainly	to	simple	text	based	documents,	unless	a
specific	merge	plugin	is	available	for	the	file	types.

The	concept	of	a	reserved	edit	can	provide	an	optional	means	to	explicitly	lock	a	file	for	exclusive	write	access,	even	when	a	merging	capability	exists.

Most	revision	control	tools	will	use	only	one	of	these	similar	terms	(baseline,	label,	tag)	to	refer	to	the	action	of	identifying	a	snapshot	("label	the	project")	or	the	record	of	the	snapshot
("try	it	with	baseline	X").	Typically	only	one	of	the	terms	baseline,	label,	or	tag	is	used	in	documentation	or	discussion

In	most	projects	some	snapshots	are	more	significant	than	others,	such	as	those	used	to	indicate	published	releases,	branches,	or	milestones.

When	both	the	term	baseline	and	either	of	 label	or	tag	are	used	together	in	the	same	context,	 label	and	tag	usually	refer	to	the	mechanism	within	the	tool	of	identifying	or	making	the
record	of	the	snapshot,	and	baseline	indicates	the	increased	significance	of	any	given	label	or	tag.

Most	formal	discussion	of	configuration	management	uses	the	term	baseline.

Distributed	revision	control	(DRCS)	takes	a	peer-to-peer	approach,	as	opposed	to	the	client-server	approach	of	centralized	systems.	Rather	than	a	single,	central	repository	on	which	clients
synchronize,	each	peer's	working	copy	of	the	codebase	is	a	bona-fide	repository.[2]	Distributed	revision	control	conducts	synchronization	by	exchanging	patches	(change-sets)	from	peer	to
peer.	This	results	in	some	important	differences	from	a	centralized	system:

No	canonical,	reference	copy	of	the	codebase	exists	by	default;	only	working	copies.
Common	operations	(such	as	commits,	viewing	history,	and	reverting	changes)	are	fast,	because	there	is	no	need	to	communicate	with	a	central	server.

Rather,	communication	is	only	necessary	when	pushing	or	pulling	changes	to	or	from	other	peers.

Each	working	copy	effectively	functions	as	a	remote	backup	of	the	codebase	and	of	its	change-history,	providing	natural	protection	against	data	loss.

Some	of	the	more	advanced	revision-control	tools	offer	many	other	facilities,	allowing	deeper	integration	with	other	tools	and	software-engineering	processes.	Plugins	are	often	available	for
IDEs	such	as	Oracle	JDeveloper,	IntelliJ	IDEA,	Eclipse	and	Visual	Studio.	NetBeans	IDE	and	Xcode	come	with	integrated	version	control	support.

Terminology	can	vary	from	system	to	system,	but	some	terms	in	common	usage	include:[4][5]

Baseline	
An	approved	revision	of	a	document	or	source	file	from	which	subsequent	changes	can	be	made.	See	baselines,	labels	and	tags.

Branch	
A	set	of	files	under	version	control	may	be	branched	or	forked	at	a	point	in	time	so	that,	from	that	time	forward,	two	copies	of	those	files	may	develop	at	different	speeds	or	in
different	ways	independently	of	each	other.

Change	
A	change	(or	diff,	or	delta)	represents	a	specific	modification	to	a	document	under	version	control.	The	granularity	of	the	modification	considered	a	change	varies	between	version
control	systems.

Change	list	
On	many	version	control	systems	with	atomic	multi-change	commits,	a	changelist,	change	set,	or	patch	identifies	the	set	of	
represent	a	sequential	view	of	the	source	code,	allowing	the	examination	of	source	"as	of"	any	particular	changelist	ID.

Checkout	
A	check-out	(or	co)	is	the	act	of	creating	a	local	working	copy	from	the	repository.	A	user	may	specify	a	specific	revision	or	obtain	the	latest.	The	term	'checkout'	can	also	used	as	a
noun	to	describe	the	working	copy.

Commit	
A	commit	(checkin,	ci	or,	more	rarely,	install,	submit	or	record)	is	the	action	of	writing	or	merging	the	changes	made	in	the	working	copy	back	to	the	repository.	The	terms
'commit'	and	'checkin'	can	also	used	in	noun	form	to	describe	the	new	revision	that	is	created	as	a	result	of	committing.

Conflict	
A	conflict	occurs	when	different	parties	make	changes	to	the	same	document,	and	the	system	is	unable	to	reconcile	the	changes.	A	user	must	
changes,	or	by	selecting	one	change	in	favour	of	the	other.

Delta	compression	
Most	revision	control	software	uses	delta	compression,	which	retains	only	the	differences	between	successive	versions	of	files.	This	allows	for	more	efficient	storage	of	many	different
versions	of	files.

Baselines,	labels	and	tags

Distributed	revision	control

Integration

Common	vocabulary

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-388
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-390
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-391

www.manaraa.com

Dynamic	stream	
A	stream	in	which	some	or	all	file	versions	are	mirrors	of	the	parent	stream's	versions.

Export	
exporting	is	the	act	of	obtaining	the	files	from	the	repository.	It	is	similar	to	checking-out	except	that	it	creates	a	clean	directory	tree	without	the	version-control	metadata	used
in	a	working	copy.	This	is	often	used	prior	to	publishing	the	contents,	for	example.

Head
Also	sometime	called	tip,	this	refers	to	the	most	recent	commit.

Import	
importing	is	the	act	of	copying	a	local	directory	tree	(that	is	not	currently	a	working	copy)	into	the	repository	for	the	first	time.

Label	
See	tag.

Mainline	
Similar	to	trunk,	but	there	can	be	a	mainline	for	each	branch.

Merge	
A	merge	or	integration	is	an	operation	in	which	two	sets	of	changes	are	applied	to	a	file	or	set	of	files.	Some	sample	scenarios	are	as	follows:

A	user,	working	on	a	set	of	files,	updates	or	syncs	their	working	copy	with	changes	made,	and	checked	into	the	repository,	by	other	users.

A	user	tries	to	check-in	files	that	have	been	updated	by	others	since	the	files	were	checked	out,	and	the	
(typically,	after	prompting	the	user	if	it	should	proceed	with	the	automatic	merge,	and	in	some	cases	only	doing	so	if	the	merge	can	be	clearly	and	reasonably	resolved).
A	set	of	files	is	branched,	a	problem	that	existed	before	the	branching	is	fixed	in	one	branch,	and	the	fix	is	then	merged	into	the	other	branch.
A	branch	is	created,	the	code	in	the	files	is	independently	edited,	and	the	updated	branch	is	later	incorporated	into	a	single,	unified	

Promote	
The	act	of	copying	file	content	from	a	less	controlled	location	into	a	more	controlled	location.	For	example,	from	a	user's	workspace	into	a	repository,	or	from	a	stream	to	its	parent.

Repository	
The	repository	is	where	files'	current	and	historical	data	are	stored,	often	on	a	server.	Sometimes	also	called	a	

Resolve	
The	act	of	user	intervention	to	address	a	conflict	between	different	changes	to	the	same	document.

Reverse	integration	
The	process	of	merging	different	team	branches	into	the	main	trunk	of	the	versioning	system.

Revision	
Also	version:	A	version	is	any	change	in	form.	In	SVK,	a	Revision	is	the	state	at	a	point	in	time	of	the	entire	tree	in	the	repository.

Ring
[citation	needed]	See	tag.

Share
The	act	of	making	one	file	or	folder	available	in	multiple	branches	at	the	same	time.	When	a	shared	file	is	changed	in	one	branch,	it	is	changed	in	other	branches.

Stream	
A	container	for	branched	files	that	has	a	known	relationship	to	other	such	containers.	Streams	form	a	hierarchy;	each	stream	can	inherit	various	properties	(like	versions,	namespace,
workflow	rules,	subscribers,	etc.)	from	its	parent	stream.

Tag	
A	tag	or	label	refers	to	an	important	snapshot	in	time,	consistent	across	many	files.	These	files	at	that	point	may	all	be	tagged	with	a	user-friendly,	meaningful	name	or	revision
number.	See	baselines,	labels	and	tags.

Trunk
The	unique	line	of	development	that	is	not	a	branch	(sometimes	also	called	Baseline	or	Mainline)

Update	
An	update	(or	sync)	merges	changes	made	in	the	repository	(by	other	people,	for	example)	into	the	local	working	copy

Working	copy
The	working	copy	is	the	local	copy	of	files	from	a	repository,	at	a	specific	time	or	revision.	All	work	done	to	the	files	in	a	repository	is	initially	done	on	a	working	copy,	hence	the
name.	Conceptually,	it	is	a	sandbox.

References

https://en.wikibooks.org/wiki/Wikibooks:OR

www.manaraa.com

1.	 "Rapid	Subversion	Adoption	Validates	Enterprise	Readiness	and	Challenges	Traditional	Software	Configuration	Management	Leaders"
http://www.open.collab.net/news/press/2007/svn_momentum.html.	Retrieved	October	27,	2010.	"Version	management	is	essential	to	software	development	and	is	considered	the	most
critical	component	of	any	development	environment."

2.	 Wheeler,	David.	"Comments	on	Open	Source	Software	/	Free	Software	(OSS/FS)	Software	Configuration	Management	(SCM)	Systems"
Retrieved	May	8,	2007.

3.	 O'Sullivan,	Bryan.	"Distributed	revision	control	with	Mercurial".	http://hgbook.red-bean.com/hgbook.html.	Retrieved	July	13,	2007
4.	 Collins-Sussman,	Ben;	Fitzpatrick,	B.W.	and	Pilato,	C.M.	(2004).	Version	Control	with	Subversion.	O'Reilly.	ISBN
5.	 Wingerd,	Laura	(2005).	Practical	Perforce.	O'Reilly.	ISBN	0-596-10185-6.	http://safari.oreilly.com/0596101856.
6.	 Collins-Sussman,	Ben;	Brian	W.	Fitpatrick,	and	C.	Michael	Pilato.	"Version	Control	with	Subversion".	http://svnbook.red-bean.com/en/1.5/svn.tour.cycle.html#svn.tour.cycle.resolve
Retrieved	8	June	2010.	"The	G	stands	for	merGed,	which	means	that	the	file	had	local	changes	to	begin	with,	but	the	changes	coming	from	the	repository	didn't	overlap	with	the	local
changes."

7.	 Accurev	Concepts	Manual,	Version	4.7.	Accurev,	Inc..	July,	2008.

Eric	Sink's	Source	Control	HOWTO	(http://www.ericsink.com/scm/source_control.html)	A	primer	on	the	basics	of	version	control
Visual	Guide	to	Version	Control	(http://betterexplained.com/articles/a-visual-guide-to-version-control/)
Better	SCM	Initiative:	Comparison	(http://better-scm.berlios.de/comparison/)	A	useful	summary	of	different	systems	and	their	features.

Build	automation	is	the	act	of	scripting	or	automating	a	wide	variety	of	tasks	that	software	developers	do	in	their	day-to-day	activities	including	things	like:

compiling	computer	source	code	into	binary	code
packaging	binary	code
running	tests
deployment	to	production	systems
creating	documentation	and/or	release	notes

Historically,	developers	used	build	automation	to	call	compilers	and	linkers	from	inside	a	build	script	versus	attempting	to	make	the	compiler	calls	from	the	command	line.	It	is	simple	to
use	the	command	line	to	pass	a	single	source	module	to	a	compiler	and	then	to	a	linker	to	create	the	final	deployable	object.	However,	when	attempting	to	compile	and	link	many	source
code	modules,	in	a	particular	order,	using	the	command	line	process	is	not	a	reasonable	solution.	The	make	scripting	language	offered	a	better	alternative.	It	allowed	a	build	script	to	be
written	to	call	 in	a	series,	the	needed	compile	and	link	steps	to	build	a	software	application.	GNU	Make	[1]	also	offered	additional	 features	such	as	"makedepend"	which	allowed	some
source	code	dependency	management	as	well	as	incremental	build	processing.	This	was	the	beginning	of	Build	Automation.	Its	primary	focus	was	on	automating	the	calls	to	the	compilers
and	 linkers.	As	the	build	process	grew	more	complex,	developers	began	adding	pre	and	post	actions	around	the	calls	 to	 the	compilers	 such	as	a	check-out	 from	version	control	 to	the
copying	of	deployable	objects	to	a	test	location.	The	term	"build	automation"	now	includes	managing	the	pre	and	post	compile	and	link	activities	as	well	as	the	compile	and	link	activities.

In	recent	years,	build	management	solutions	have	provided	even	more	relief	when	it	comes	to	automating	the	build	process.	Both	commercial	and	open	source	solutions	are	available	to
perform	more	automated	build	and	workflow	processing.	Some	solutions	focus	on	automating	the	pre	and	post	steps	around	the	calling	of	the	build	scripts,	while	others	go	beyond	the	pre
and	post	build	script	processing	and	drive	down	into	streamlining	the	actual	compile	and	linker	calls	without	much	manual	scripting.	These	tools	are	particularly	useful	for	continuous
integration	builds	where	frequent	calls	to	the	compile	process	are	required	and	incremental	build	processing	is	needed.

Advanced	build	automation	offers	remote	agent	processing	for	distributed	builds	and/or	distributed	processing.	The	term	"distributed	builds"	means	that	the	actual	calls	to	the	compiler
and	linkers	can	be	served	out	to	multiple	locations	for	improving	the	speed	of	the	build.	This	term	is	often	confused	with	"distributed	processing".	Distributed	processing	means	that	each
step	 in	 a	 process	 or	workflow	 can	be	 sent	 to	 a	 different	machine	 for	 execution.	For	 example,	 a	 post	 step	 to	 the	build	may	 require	 the	 execution	 of	multiple	 test	 scripts	 on	multiple
machines.	Distributed	processing	can	send	the	different	test	scripts	to	different	machines.	Distributed	processing	is	not	distributed	builds.	Distributed	processing	cannot	take	a	make,	ant	or
maven	script,	break	it	up	and	send	it	to	different	machines	for	compiling	and	linking.	The	distributed	build	process	must	have	the	machine	 intelligence	to	understand	the	source	code
dependencies	 in	order	 to	 send	the	different	compile	and	 link	steps	 to	different	machines.	A	build	automation	solution	must	be	able	 to	manage	these	dependencies	 in	order	 to	perform
distributed	builds.	Some	build	tools	can	discover	these	relationships	programmatically	(Rational	ClearMake	distributed
user-configured	 dependencies	 (Platform	LSF	 lsmake[4])	 Build	 automation	 that	 can	 sort	 out	 source	 code	 dependency	 relationships	 can	 also	 be	 configured	 to	 run	 the	 compile	 and	 link
activities	in	a	parallelized	mode.	This	means	that	the	compiler	and	linkers	can	be	called	in	multi-threaded	mode	using	a	machine	that	is	configured	with	more	than	one	core.

Not	all	build	automation	tools	can	perform	distributed	builds.	Most	only	provide	distributed	processing	support.	In	addition,	most	solutions	that	do	support	distributed	builds	can	only
handle	C	or	C++.	Build	automation	solutions	that	support	distributed	processing	are	often	make	based	and	many	do	not	support	Maven	or	Ant.

An	example	of	a	distributed	build	solution	is	Xoreax's	IncrediBuild[5]	for	the	Microsoft	Visual	Studio	platform	or	the	open-source	CMake
a	product	environment	so	that	it	can	run	successfully	on	a	distributed	platform—library	locations,	environment	variables,	and	so	forth.

Improve	product	quality
Accelerate	the	compile	and	link	processing

External	links

Build	Tools

History

New	breed	of	solutions

Advanced	build	automation

Advantages

http://www.open.collab.net/news/press/2007/svn_momentum.html
http://www.open.collab.net/news/press/2007/svn_momentum.html
http://www.dwheeler.com/essays/scm.html
http://hgbook.red-bean.com/hgbook.html
http://hgbook.red-bean.com/hgbook.html
http://svnbook.red-bean.com/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
http://safari.oreilly.com/0596101856
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-596-10185-6
http://safari.oreilly.com/0596101856
http://svnbook.red-bean.com/en/1.5/svn.tour.cycle.html#svn.tour.cycle.resolve
http://svnbook.red-bean.com/en/1.5/svn.tour.cycle.html#svn.tour.cycle.resolve
http://www.ericsink.com/scm/source_control.html
http://betterexplained.com/articles/a-visual-guide-to-version-control/
http://better-scm.berlios.de/comparison/
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-394
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-397
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-398

www.manaraa.com

Eliminate	redundant	tasks
Minimize	"bad	builds"
Eliminate	dependencies	on	key	personnel
Have	history	of	builds	and	releases	in	order	to	investigate	issues
Save	time	and	money	-	because	of	the	reasons	listed	above.[7]

On-Demand	automation	such	as	a	user	running	a	script	at	the	command	line
Scheduled	automation	such	as	a	continuous	integration	server	running	a	nightly	build
Triggered	automation	such	as	a	continuous	integration	server	running	a	build	on	every	commit	to	a	version	control	system.

One	specific	form	of	build	automation	is	the	automatic	generation	of	Makefiles.	This	is	accomplished	by	tools	like

GNU	Automake
CMake
imake
qmake
nmake
wmake
Apache	Ant
Apache	Maven
OpenMake	Meister

Basic	requirements:

1.	 Frequent	or	overnight	builds	to	catch	problems	early.[8][9][10]

2.	 Support	for	Source	Code	Dependency	Management
3.	 Incremental	build	processing
4.	 Reporting	that	traces	source	to	binary	matching
5.	 Build	acceleration
6.	 Extraction	and	reporting	on	build	compile	and	link	usage

Optional	requirements:[11]

1.	 Generate	release	notes	and	other	documentation	such	as	help	pages
2.	 Build	status	reporting
3.	 Test	pass	or	fail	reporting
4.	 Summary	of	the	features	added/modified/deleted	with	each	new	build

1.	 http://www.gnu.org/software/make/
2.	 Dr.	Dobb's	Distributed	Loadbuilds,	http://www.ddj.com/architect/184405385,	retrieved	2009-04-13
3.	 Dr.	Dobb's	Take	My	Build,	Please,	http://www.ddj.com/architect/184415472
4.	 LSF	User's	Guide	-	Using	lsmake,	http://www.lle.rochester.edu/pub/support/lsf/10-lsmake.html,	retrieved	2009-04-13
5.	 Distributed	Visual	Studio	Builds,	http://www.xoreax.com/solutions_vs.htm,	retrieved	2009-04-08
6.	 CMake	-	Cross	platform	make,	http://www.cmake.org/,	retrieved	2010-03-27
7.	 http://www.denverjug.org/meetings/files/200410_automation.pdf
8.	 http://freshmeat.net/articles/view/392/
9.	 http://www.ibm.com/developerworks/java/library/j-junitmail/
10.	 http://buildbot.net/trac

Types

Makefile

Requirements	of	a	build	system

References

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-400
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-401
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-402
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-403
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-404
http://www.gnu.org/software/make/
http://www.ddj.com/architect/184405385
http://www.ddj.com/architect/184405385
http://www.ddj.com/architect/184415472
http://www.ddj.com/architect/184415472
http://www.lle.rochester.edu/pub/support/lsf/10-lsmake.html
http://www.lle.rochester.edu/pub/support/lsf/10-lsmake.html
http://www.xoreax.com/solutions_vs.htm
http://www.xoreax.com/solutions_vs.htm
http://www.cmake.org/
http://www.cmake.org/
http://www.denverjug.org/meetings/files/200410_automation.pdf
http://freshmeat.net/articles/view/392/
http://www.ibm.com/developerworks/java/library/j-junitmail/
http://buildbot.net/trac

www.manaraa.com

11.	 http://www.cmcrossroads.com/content/view/12525/120/

Notes

Mike	Clark:	Pragmatic	Project	Automation,	The	Pragmatic	Programmers	ISBN	0-9745140-3-9

Software	documentation	or	source	code	documentation	is	written	text	that	accompanies	computer	software.	It	either	explains	how	it	operates	or	how	to	use	it,	and	may	mean
different	things	to	people	in	different	roles.

Documentation	is	an	important	part	of	software	engineering.	Types	of	documentation	include:

1.	 Requirements	-	Statements	that	identify	attributes,	capabilities,	characteristics,	or	qualities	of	a	system.	This	is	the	foundation	for	what	shall	be	or	has	been	implemented.
2.	 Architecture/Design	-	Overview	of	softwares.	Includes	relations	to	an	environment	and	construction	principles	to	be	used	in	design	of	software	components.
3.	 Technical	-	Documentation	of	code,	algorithms,	interfaces,	and	APIs.
4.	 End	User	-	Manuals	for	the	end-user,	system	administrators	and	support	staff.
5.	 Marketing	-	How	to	market	the	product	and	analysis	of	the	market	demand.

Requirements	documentation	is	the	description	of	what	a	particular	software	does	or	shall	do.	It	is	used	throughout	development	to	communicate	what	the	software	does	or	shall	do.	It	is
also	used	as	an	agreement	or	as	the	foundation	for	agreement	on	what	the	software	shall	do.	Requirements	are	produced	and	consumed	by	everyone	involved	in	the	production	of	software:
end	users,	customers,	product	managers,	project	managers,	sales,	marketing,	software	architects,	usability	engineers,	interaction	designers,	developers,	and	testers,	to	name	a	few.	Thus,
requirements	documentation	has	many	different	purposes.

Requirements	come	in	a	variety	of	styles,	notations	and	formality.	Requirements	can	be	goal-like	(e.g.,	distributed	work	environment
clicking	a	configuration	file	and	select	the	'build'	function),	and	anything	in	between.	They	can	be	specified	as	statements	in	natural	language,	as	drawn	figures,	as	detailed	mathematical
formulas,	and	as	a	combination	of	them	all.

The	variation	and	complexity	of	requirements	documentation	makes	it	a	proven	challenge.	Requirements	may	be	implicit	and	hard	to	uncover.	It	is	difficult	to	know	exactly	how	much	and
what	kind	of	documentation	is	needed	and	how	much	can	be	left	to	the	architecture	and	design	documentation,	and	it	is	difficult	to	know	how	to	document	requirements	considering	the
variety	 of	 people	 that	 shall	 read	 and	 use	 the	 documentation.	 Thus,	 requirements	 documentation	 is	 often	 incomplete	 (or	 non-existent).	Without	 proper	 requirements	 documentation,
software	changes	become	more	difficult—and	therefore	more	error	prone	(decreased	software	quality)	and	time-consuming	(expensive).

The	need	for	requirements	documentation	is	typically	related	to	the	complexity	of	the	product,	the	impact	of	the	product,	and	the	life	expectancy	of	the	software.	If	the	software	is	very
complex	or	developed	by	many	people	(e.g.,	mobile	phone	software),	requirements	can	help	to	better	communicate	what	to	achieve.	If	the	software	is	safety-critical	and	can	have	negative
impact	on	human	life	(e.g.,	nuclear	power	systems,	medical	equipment),	more	formal	requirements	documentation	is	often	required.	If	the	software	is	expected	to	live	for	only	a	month	or
two	(e.g.,	very	small	mobile	phone	applications	developed	specifically	for	a	certain	campaign)	very	little	requirements	documentation	may	be	needed.	If	the	software	is	a	first	release	that	is
later	built	upon,	requirements	documentation	is	very	helpful	when	managing	the	change	of	the	software	and	verifying	that	nothing	has	been	broken	in	the	software	when	it	is	modified.

Traditionally,	 requirements	 are	 specified	 in	 requirements	 documents	 (e.g.	 using	 word	 processing	 applications	 and	 spreadsheet	 applications).	 To	manage	 the	 increased	 complexity	 and
changing	nature	of	requirements	documentation	(and	software	documentation	in	general),	database-centric	systems	and	special-purpose	requirements	management	tools	are	advocated.

Architecture	documentation	is	a	special	breed	of	design	document.	In	a	way,	architecture	documents	are	third	derivative	from	the	code	(design	document	being	second	derivative,	and	code
documents	being	first).	Very	little	 in	the	architecture	documents	is	specific	to	the	code	itself.	These	documents	do	not	describe	how	to	program	a	particular	routine,	or	even	why	that
particular	routine	exists	in	the	form	that	it	does,	but	instead	merely	lays	out	the	general	requirements	that	would	motivate	the	existence	of	such	a	routine.	A	good	architecture	document	is
short	on	details	but	thick	on	explanation.	It	may	suggest	approaches	for	lower	level	design,	but	leave	the	actual	exploration	trade	studies	to	other	documents.

Another	breed	of	design	docs	is	the	comparison	document,	or	trade	study.	This	would	often	take	the	form	of	a	whitepaper
alternate	approaches.	It	could	be	at	the	user	interface,	code,	design,	or	even	architectural	level.	It	will	outline	what	the	situation	is,	describe	one	or	more	alternatives,	and	enumerate	the
pros	and	cons	of	each.	A	good	trade	study	document	is	heavy	on	research,	expresses	its	idea	clearly	(without	relying	heavily	on	obtuse	jargon	to	dazzle	the	reader),	and	most	importantly	is
impartial.	 It	 should	honestly	 and	 clearly	 explain	 the	 costs	 of	whatever	 solution	 it	 offers	 as	 best.	The	 objective	 of	 a	 trade	 study	 is	 to	devise	 the	best	 solution,	 rather	 than	 to	push	 a
particular	point	of	view.	It	is	perfectly	acceptable	to	state	no	conclusion,	or	to	conclude	that	none	of	the	alternatives	are	sufficiently	better	than	the	baseline	to	warrant	a	change.	It	should
be	approached	as	a	scientific	endeavor,	not	as	a	marketing	technique.

A	 very	 important	 part	 of	 the	 design	 document	 in	 enterprise	 software	 development	 is	 the	 Database	 Design	 Document	 (DDD).	 It	 contains	 Conceptual,	 Logical,	 and	 Physical	 Design
Elements.	The	DDD	includes	the	formal	information	that	the	people	who	interact	with	the	database	need.	The	purpose	of	preparing	it	 is	to	create	a	common	source	to	be	used	by	all
players	within	the	scene.	The	potential	users	are:

Database	Designer
Database	Developer
Database	Administrator
Application	Designer
Application	Developer

When	talking	about	Relational	Database	Systems,	the	document	should	include	following	parts:

Entity	-	Relationship	Schema,	including	following	information	and	their	clear	definitions:

Entity	Sets	and	their	attributes

Software	Documentation

Involvement	of	people	in	software	life

Requirements	documentation

Architecture/Design	documentation

http://www.cmcrossroads.com/content/view/12525/120/
https://en.wikibooks.org/wiki/Special:BookSources/0-9745140-3-9

www.manaraa.com

Relationships	and	their	attributes
Candidate	keys	for	each	entity	set
Attribute	and	Tuple	based	constraints

Relational	Schema,	including	following	information:

Tables,	Attributes,	and	their	properties
Views
Constraints	such	as	primary	keys,	foreign	keys,
Cardinality	of	referential	constraints
Cascading	Policy	for	referential	constraints
Primary	keys

It	is	very	important	to	include	all	information	that	is	to	be	used	by	all	actors	in	the	scene.	It	is	also	very	important	to	update	the	documents	as	any	change	occurs	in	the	database	as	well.

This	is	what	most	programmers	mean	when	using	the	term	software	documentation.	When	creating	software,	code	alone	is	insufficient.	There	must	be	some	text	along	with	it	to	describe
various	 aspects	 of	 its	 intended	operation.	 It	 is	 important	 for	 the	 code	documents	 to	be	 thorough,	but	not	 so	verbose	 that	 it	 becomes	difficult	 to	maintain	 them.	Several	How-to	 and
overview	documentation	are	found	specific	to	the	software	application	or	software	product	being	documented	by	API	Writers.	This	documentation	may	be	used	by	developers,	testers	and
also	 the	end	customers	or	 clients	using	 this	 software	application.	Today,	we	 see	 lot	of	high	end	applications	 in	 the	 field	of	power,	 energy,	 transportation,	networks,	aerospace,	 safety,
security,	industry	automation	and	a	variety	of	other	domains.	Technical	documentation	has	become	important	within	such	organizations	as	the	basic	and	advanced	level	of	information
may	change	over	a	period	of	time	with	architecture	changes.	Hence,	technical	documentation	has	gained	lot	of	importance	in	recent	times,	especially	in	the	software	field.

Often,	tools	such	as	Doxygen,	NDoc,	javadoc,	EiffelStudio,	Sandcastle,	ROBODoc,	POD,	TwinText,	or	Universal	Report	can	be	used	to	auto-generate	the	code	documents—that	is,	they
extract	the	comments	and	software	contracts,	where	available,	from	the	source	code	and	create	reference	manuals	in	such	forms	as	text	or	HTML	files.	Code	documents	are	often	organized
into	a	reference	guide	style,	allowing	a	programmer	to	quickly	look	up	an	arbitrary	function	or	class.

The	 idea	 of	 auto-generating	 documentation	 is	 attractive	 to	 programmers	 for	 various	 reasons.	 For	 example,	 because	 it	 is	 extracted	 from	 the	 source	 code	 itself	 (for	 example,	 through
comments),	the	programmer	can	write	it	while	referring	to	the	code,	and	use	the	same	tools	used	to	create	the	source	code	to	make	the	documentation.	This	makes	it	much	easier	to	keep
the	documentation	up-to-date.

Of	course,	a	downside	is	that	only	programmers	can	edit	this	kind	of	documentation,	and	it	depends	on	them	to	refresh	the	output	(for	example,	by	running	a	cron	job	to	update	the
documents	nightly).	Some	would	characterize	this	as	a	pro	rather	than	a	con.

Donald	Knuth	has	insisted	on	the	fact	that	documentation	can	be	a	very	difficult	afterthought	process	and	has	advocated	literate	programming,	writing	at	the	same	time	and	location	as
the	source	code	and	extracted	by	automatic	means.

Elucidative	 Programming	 is	 the	 result	 of	 practical	 applications	 of	 Literate	 Programming	 in	 real	 programming	 contexts.	 The	 Elucidative	 paradigm	 proposes	 that	 source	 code	 and
documentation	be	stored	separately.	This	paradigm	was	inspired	by	the	same	experimental	findings	that	produced	Kelp
create	and	access	information	that	is	not	going	to	be	part	of	the	source	file	 itself.	Such	annotations	are	usually	part	of	several	software	development	activities,	such	as	code	walks	and
porting,	 where	 third	 party	 source	 code	 is	 analysed	 in	 a	 functional	 way.	 Annotations	 can	 therefore	 help	 the	 developer	 during	 any	 stage	 of	 software	 development	 where	 a	 formal
documentation	system	would	hinder	progress.	Kelp	(http://kelp.sf.net/)	stores	annotations	in	separate	files,	linking	the	information	to	the	source	code	dynamically.

Unlike	code	documents,	user	documents	are	usually	far	more	diverse	with	respect	to	the	source	code	of	the	program,	and	instead	simply	describe	how	it	is	used.

In	the	case	of	a	software	library,	the	code	documents	and	user	documents	could	be	effectively	equivalent	and	are	worth	conjoining,	but	for	a	general	application	this	is	not	often	true.

Typically,	the	user	documentation	describes	each	feature	of	the	program,	and	assists	the	user	in	realizing	these	features.	A	good	user	document	can	also	go	so	far	as	to	provide	thorough
troubleshooting	assistance.	It	is	very	important	for	user	documents	to	not	be	confusing,	and	for	them	to	be	up	to	date.	User	documents	need	not	be	organized	in	any	particular	way,	but	it
is	very	important	for	them	to	have	a	thorough	index.	Consistency	and	simplicity	are	also	very	valuable.	User	documentation	is	considered	to	constitute	a	contract	specifying	what	the
software	will	do.	API	Writers	are	very	well	accomplished	towards	writing	good	user	documents	as	they	would	be	well	aware	of	the	software	architecture	and	programming	techniques	used.
See	also	Technical	Writing.

There	are	three	broad	ways	in	which	user	documentation	can	be	organized.

1.	 Tutorial:	A	tutorial	approach	is	considered	the	most	useful	for	a	new	user,	in	which	they	are	guided	through	each	step	of	accomplishing	particular	tasks	
2.	 Thematic:	A	thematic	approach,	where	chapters	or	sections	concentrate	on	one	particular	area	of	interest,	is	of	more	general	use	to	an	intermediate	user.	Some	authors	prefer	to
convey	their	ideas	through	a	knowledge	based	article	to	facilitating	the	user	needs.	This	approach	is	usually	practiced	by	a	dynamic	industry,	such	as	Information	technology,	where	the
user	population	is	largely	correlated	with	the	troubleshooting	demands	[2],	[3].

3.	 List	or	Reference:	The	final	type	of	organizing	principle	is	one	in	which	commands	or	tasks	are	simply	listed	alphabetically	or	logically	grouped,	often	via	cross-referenced	indexes.
This	latter	approach	is	of	greater	use	to	advanced	users	who	know	exactly	what	sort	of	information	they	are	looking	for.

A	common	complaint	among	users	regarding	software	documentation	is	that	only	one	of	these	three	approaches	was	taken	to	the	near-exclusion	of	the	other	two.	It	is	common	to	limit
provided	software	documentation	for	personal	computers	to	online	help	that	give	only	reference	information	on	commands	or	menu	items.	The	job	of	tutoring	new	users	or	helping	more
experienced	users	get	the	most	out	of	a	program	is	left	to	private	publishers,	who	are	often	given	significant	assistance	by	the	software	developer.

For	many	applications	it	is	necessary	to	have	some	promotional	materials	to	encourage	casual	observers	to	spend	more	time	learning	about	the	product.	This	form	of	documentation	has
three	purposes:-

1.	 To	excite	the	potential	user	about	the	product	and	instill	in	them	a	desire	for	becoming	more	involved	with	it.

Technical	documentation

User	documentation

Marketing	documentation

http://kelp.sf.net/
http://kelp.sf.net/
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-kbad-406
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-bwaa-407

www.manaraa.com

2.	 To	inform	them	about	what	exactly	the	product	does,	so	that	their	expectations	are	in	line	with	what	they	will	be	receiving.
3.	 To	explain	the	position	of	this	product	with	respect	to	other	alternatives.
One	good	marketing	technique	is	to	provide	clear	and	memorable	catch	phrases	that	exemplify	the	point	we	wish	to	convey,	and	also	emphasize	the	interoperability	of	the	program	with
anything	else	provided	by	the	manufacturer.

1.	 Woelz,	Carlos.	"The	KDE	Documentation	Primer".	http://i18n.kde.org/docs/doc-primer/index.html.	Retrieved	15	June	2009
2.	 Microsoft.	"Knowledge	Base	Articles	for	Driver	Development".	http://www.microsoft.com/whdc/driver/kernel/kb-drv.mspx
3.	 Prekaski,	Todd.	"Building	web	and	Adobe	AIR	applications	from	a	shared	Flex	code	base".	http://www.adobe.com/devnet/air/flex/articles/flex_air_codebase.html
2009.

kelp	(http://kelp.sf.net/)	-	a	source	code	annotation	framework	for	architectural,	design	and	technical	documentation.
ISO	documentation	standards	committee	(http://www.hci.com.au/iso)	-	International	Organization	for	Standardization	committee	which	develops	user	documentation	standards.

This	is	a	list	of	tools	for	static	code	analysis.

Lint	—	The	original	static	code	analyzer	of	C	code.

PMD	Copy/Paste	Detector	(CPD)	—	PMDs	duplicate	code	detection	for	(e.g.)	Java,	JSP,	C,	C++	and	PHP	code.
Sonar	—	A	continuous	inspection	engine	to	manage	the	technical	debt	(unit	tests,	complexity,	duplication,	design,	comments,	coding	standards	and	potential	problems).	Supported
languages	are	Java,	Flex,	PHP,	PL/SQL,	Cobol	and	Visual	Basic	6.
Yasca	—	Yet	Another	Source	Code	Analyzer,	a	plugin-based	framework	for	scanning	arbitrary	file	types,	with	plugins	for	scanning	C/C++,	Java,	JavaScript,	ASP,	PHP,	HTML/CSS,
ColdFusion,	COBOL,	and	other	file	types.	It	integrates	with	other	scanners,	including	FindBugs,	JLint,	PMD,	and	Pixy.

FxCop	—	Free	static	analysis	for	Microsoft	.NET	programs	that	compile	to	CIL.	Standalone	and	integrated	in	some	Microsoft	Visual	Studio	editions.	From	Microsoft.
Gendarme	—	Open-source	(MIT	License)	equivalent	to	FxCop	created	by	the	Mono	project.	Extensible	rule-based	tool	to	find	problems	in	.NET	applications	and	libraries,	particularly
those	that	contain	code	in	ECMA	CIL	format.
StyleCop	—	Analyzes	C#	source	code	to	enforce	a	set	of	style	and	consistency	rules.	It	can	be	run	from	inside	of	Microsoft	Visual	Studio	or	integrated	into	an	MSBuild	project.	Free
download	from	Microsoft.

Apparat	—	A	language	manipulation	and	optimization	framework	consisting	of	intermediate	representations	for	ActionScript.

BLAST	(Berkeley	Lazy	Abstraction	Software	verification	Tool)	—	A	software	model	checker	for	C	programs	based	on	lazy	abstraction.
Clang	—	A	compiler	that	includes	a	static	analyzer.
Frama-C	—	A	static	analysis	framework	for	C.
Lint	—	The	original	static	code	analyzer	for	C.
Sparse	—	A	tool	designed	to	find	faults	in	the	Linux	kernel.
Splint	—	An	open	source	evolved	version	of	Lint	(for	C).

cppcheck	—	Open-source	tool	that	checks	for	several	types	of	errors,	including	the	use	of	STL.

Checkstyle	—	Besides	some	static	code	analysis,	it	can	be	used	to	show	violations	of	a	configured	coding	standard.

Notes

External	links

Static	Code	Analysis

Historical	products

Open-source	or	Non-commercial	products

Multi-language

.NET	(C#,	VB.NET	and	all	.NET	compatible	languages)

ActionScript

C

C++

Java

http://i18n.kde.org/docs/doc-primer/index.html
http://i18n.kde.org/docs/doc-primer/index.html
http://www.microsoft.com/whdc/driver/kernel/kb-drv.mspx
http://www.microsoft.com/whdc/driver/kernel/kb-drv.mspx
http://www.adobe.com/devnet/air/flex/articles/flex_air_codebase.html
http://www.adobe.com/devnet/air/flex/articles/flex_air_codebase.html
http://kelp.sf.net/
http://www.hci.com.au/iso

www.manaraa.com

FindBugs	—	An	open-source	static	bytecode	analyzer	for	Java	(based	on	Jakarta	BCEL)	from	the	University	of	Maryland.
Hammurapi	—	(Free	for	non-commercial	use	only)	versatile	code	review	solution.
PMD	—	A	static	ruleset	based	Java	source	code	analyzer	that	identifies	potential	problems.
Soot	—	A	language	manipulation	and	optimization	framework	consisting	of	intermediate	languages	for	Java.
Squale	—	A	platform	to	manage	software	quality	(also	available	for	other	languages,	using	commercial	analysis	tools	though).

Closure	Compiler	—	JavaScript	optimizer	that	rewrites	JavaScript	code	to	make	it	faster	and	more	compact.	It	also	checks	your	usage	of	native	javascript	functions.
JSLint	—	JavaScript	syntax	checker	and	validator.

Clang	—	The	free	Clang	project	includes	a	static	analyzer.	As	of	version	3.2,	this	analyzer	is	included	in	Xcode.[1]

Oclint	—	OCLint	is	a	static	code	analysis	tool	for	improving	quality	and	reducing	defects	by	inspecting	C,	C++	and	Objective-C	code	
Faux	Pas	—	Faux	Pas	inspects	your	iOS	or	Mac	app’s	Xcode	project	and	warns	about	possible	bugs,	as	well	as	about	maintainability	and	style	issues.	
Facebook	Infer	—	Open	Source	Tool	by	Facebook	to	detect	bugs	in	Android	and	iOS	apps	[4]

Sonar	for	Objective	C	—	Open	Source	Sonar	plugin	for	xcode.	[5]

Sonar	for	Objective	C	(Commercial	version)	—	Paid	Sonar	plugin	for	xcode	.[6]

Axivion	Bauhaus	Suite	—	A	tool	for	C,	C++,	C#,	Java	and	Ada	code	that	comprises	various	analyses	such	as	architecture	checking,	interface	analyses,	and	clone	detection.
Black	Duck	Suite	—	Analyze	the	composition	of	software	source	code	and	binary	files,	search	for	reusable	code,	manage	open	source	and	third-party	code	approval,	honor	the	legal
obligations	associated	with	mixed-origin	code,	and	monitor	related	security	vulnerabilities.
CAST	Application	Intelligence	Platform	—	Detailed,	audience-specific	dashboards	to	measure	quality	and	productivity.	30+	languages,	SAP,	Oracle,	PeopleSoft,	Siebel,	.NET,	Java,
C/C++,	Struts,	Spring,	Hibernate	and	all	major	databases.
Checkmarx	CxSuite	—	Source	code	analysis	tool	which	identifies	application	security	vulnerabilities	in	the	following	languages:	Java,	C#	/	.NET,	PHP,	C,	C++,	Visual	Basic	6.0,
VB.NET,	APEX,	Ruby,	Javascript,	ASP,	Perl,	Android,	Objective	C,	PL/SQL,	HTML5,	Python	and	Groovy.
Coverity	Static	Analysis	(formerly	Coverity	Prevent)	—	Identifies	security	vulnerabilities	and	code	defects	in	C,	C++,	C#	and	Java	code.	Complements	Coverity	Dynamic	Code
Analysis	and	Architecture	Analysis.
DMS	Software	Reengineering	Toolkit	—	Supports	custom	analysis	of	C,	C++,	C#,	Java,	COBOL,	PHP,	VisualBasic	and	many	other	languages.	Also	COTS	tools	for	clone	analysis,
dead	code	analysis,	and	style	checking.
Compuware	DevEnterprise	—	Analysis	of	COBOL,	PL/I,	JCL,	CICS,	DB2,	IMS	and	others.
Fortify	—	Helps	developers	identify	software	security	vulnerabilities	in	C/C++,	.NET,	Java,	JSP,	ASP.NET,	ColdFusion,	"Classic"	ASP,	PHP,	VB6,	VBScript,	JavaScript,	PL/SQL,
T-SQL,	python	and	COBOL	as	well	as	configuration	files.
GrammaTech	CodeSonar	—	Analyzes	C,C++.
Imagix	4D	—	Identifies	problems	in	variable	usage,	task	interaction	and	concurrency,	particularly	in	embedded	applications,	as	part	of	an	overall	solution	for	understanding,	improving
and	documenting	C,	C++	and	Java	software.
Intel	-	Intel	Parallel	Studio	XE:	Contains	Static	Security	Analysis	(SSA)	feature	supports	C/C++	and	Fortran
JustCode	—	Code	analysis	and	refactoring	productivity	tool	for	JavaScript,	C#,	Visual	Basic.NET,	and	ASP.NET
Klocwork	Insight	—	Provides	security	vulnerability	and	defect	detection	as	well	as	architectural	and	build-over-build	trend	analysis	for	C,	C++,	C#	and	Java.
Kiuwan	(https://www.kiuwan.com)	–	Software	Analytics	end-to-end	platform	for	static	code	analysis,	defect	detection,	application	security	&	IT	Risk	Management,	with	enhanced	life
cycle	and	application	governance	features.	It	supports	over	25	languages,	including	Objective-C,	Java,	JSP,	JavaScript,	PHP,	C,	C++,	ABAP,	COBOL,	JCL,	C#,	PL/SQL,	Transact-
SQL,	SQL,	Visual	Basic,	Visual	Basic	.NET,	Android	(operating	system).
Lattix,	Inc.	LDM	—	Architecture	and	dependency	analysis	tool	for	Ada,	C/C++,	Java,	.NET	software	systems.
LDRA	Testbed	—	A	software	analysis	and	testing	tool	suite	for	C,	C++,	Ada83,	Ada95	and	Assembler	(Intel,	Freescale,	Texas	Instruments).
Micro	Focus	(formerly	Relativity	Technologies)	Modernization	Workbench	—	Parsers	included	for	COBOL	(multiple	variants	including	IBM,	Unisys,	MF,	ICL,	Tandem),	PL/I,
Natural	(inc.	ADABAS),	Java,	Visual	Basic,	RPG,	C	&	C++	and	other	legacy	languages;	Extensible	SDK	to	support	3rd	party	parsers.	Supports	automated	Metrics	(including
Function	Points),	Business	Rule	Mining,	Componentisation	and	SOA	Analysis.	Rich	ad	hoc	diagramming,	AST	search	&	reporting)

JavaScript

Objective-C

Commercial	products

Multi-language

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-408
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-411
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-412
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-413
https://www.kiuwan.com/

www.manaraa.com

Ounce	Labs	(from	2010	IBM	Rational	Appscan	Source)	—	Automated	source	code	analysis	that	enables	organizations	to	identify	and	eliminate	software	security	vulnerabilities	in
languages	including	Java,	JSP,	C/C++,	C#,	ASP.NET	and	VB.Net.
Parasoft	—	Analyzes	Java	(Jtest),	JSP,	C,	C++	(C++test),	.NET	(C#,	ASP.NET,	VB.NET,	etc.)	using	.TEST,	WSDL,	XML,	HTML,	CSS,	JavaScript,	VBScript/ASP,	and
configuration	files	for	security[7],	compliance[8],	and	defect	prevention.
Polyspace	—	Uses	abstract	interpretation	to	detect	and	prove	the	absence	of	certain	run-time	errors	in	source	code	for	C,	C++,	and	Ada
Rational	Asset	Analyzer	(IBM);	Supports	COBOL(multiple	variants),	PL/I,	Java
Rational	Software	Analyzer	—	Supports	Java,	C/C++	(and	others	available	through	extensions)
Security	Reviewer	(http://www.securityreviewer.com)	1500+	Rules	with	up	to	12	variants	each,	specialized	per	language	with	thousands	of	API	and	Frameworks	covered.	Supports
languages:	ABAP,	Android	Mobile,	ASP,	ASPX,	C,	C++,	CSS,	Objective-C,	COBOL,	C#,	Forms,	HTML5,	Java-JSP-JSF,	JavaScript,	PHP,	Ruby,	Python,	11	SQL	dialects	including
PL/SQL	and	T-SQL	and	TeradataSQL,	VB.net,	Visual	Basic	6,	Windows	Mobile,	XML,	XPath.	NIST	and	CVE	checking.	OWASP,	CWE	standards.	200+	Quality	Metrics.	Best
Practices.	SQALE	dashboard.
SofCheck	Inspector	—	Provides	static	detection	of	logic	errors,	race	conditions,	and	redundant	code	for	Java	and	Ada.	Provides	automated	extraction	of	pre/postconditions	from	code
itself.
SourceMeter	—	A	platform-independent,	command-line	static	source	code	analyzer	for	Java,	C/C++,	RPG	IV	(AS/400)	and	Python
Sotoarc/Sotograph	—	Architecture	and	quality	in-depth	analysis	and	monitoring	for	Java,	C#,	C	and	C++
Syhunt	Sandcat	—	Detects	security	flaws	in	PHP,	Classic	ASP	and	ASP.NET	web	applications.
Understand	—	Analyzes	C,C++,	Java,	Ada,	Fortran,	Jovial,	Delphi,	VHDL,	HTML,	CSS,	PHP,	and	JavaScript	—	reverse	engineering	of	source,	code	navigation,	and	metrics	tool.
Veracode	—	Finds	security	flaws	in	application	binaries	and	bytecode	without	requiring	source.	Supported	languages	include	C,	C++,	.NET	(C#,	C++/CLI,	VB.NET,	ASP.NET),
Java,	JSP,	ColdFusion,	and	PHP.
Visual	Studio	Team	System	—	Analyzes	C++,C#	source	codes.	only	available	in	team	suite	and	development	edition.

Products	covering	multiple	.NET	languages.

CodeIt.Right	—	Combines	Static	Code	Analysis	and	automatic	Refactoring	to	best	practices	which	allows	automatically	correct	code	errors	and	violations.	Supports	both	C#	and
VB.NET.
CodeRush	—	A	plugin	for	Visual	Studio,	it	addresses	a	multitude	of	short	comings	with	the	popular	IDE.	Including	alerting	users	to	violations	of	best	practices	by	using	static	code
analysis.
JustCode	—	Add-on	for	Visual	Studio	2005/2008/2010	for	real-time,	solution-wide	code	analysis	for	C#,	VB.NET,	ASP.NET,	XAML,	JavaScript,	HTML	and	multi-language	solutions.
NDepend	—	Simplifies	managing	a	complex	.NET	code	base	by	analyzing	and	visualizing	code	dependencies,	by	defining	design	rules,	by	doing	impact	analysis,	and	by	comparing
different	versions	of	the	code.	Integrates	into	Visual	Studio.
ReSharper	—	Add-on	for	Visual	Studio	2003/2005/2008/2010	from	the	creators	of	IntelliJ	IDEA,	which	also	provides	static	code	analysis	for	C#.
Kalistick	—	Mixing	from	the	Cloud:	static	code	analysis	with	best	practice	tips	and	collaborative	tools	for	Agile	teams

Ada-ASSURED	—	A	tool	that	offers	coding	style	checks,	standards	enforcement	and	pretty	printing	features.
AdaCore	CodePeer	—	Automated	code	review	and	bug	finder	for	Ada	programs	that	uses	control-flow,	data-flow,	and	other	advanced	static	analysis	techniques.
LDRA	Testbed	—	A	software	analysis	and	testing	tool	suite	for	Ada83/95.
SofCheck	Inspector	—	Provides	static	detection	of	logic	errors,	race	conditions,	and	redundant	code	for	Ada.	Provides	automated	extraction	of	pre/postconditions	from	code	itself.

FlexeLint	—	A	multiplatform	version	of	PC-Lint.
Green	Hills	Software	DoubleCheck	—	A	software	analysis	tool	for	C/C++.
Intel	-	Intel	Parallel	Studio	XE:	Contains	Static	Security	Analysis	(SSA)	feature
LDRA	Testbed	—	A	software	analysis	and	testing	tool	suite	for	C/C++.
Monoidics	INFER	—	A	sound	tool	for	C/C++	based	on	Separation	Logic.
PC-Lint	—	A	software	analysis	tool	for	C/C++.
PVS-Studio	—	A	software	analysis	tool	for	C,C++,C++11,C++/CX.
QA-C	(and	QA-C++)	—	Deep	static	analysis	of	C/C++	for	quality	assurance	and	guideline	enforcement.
Red	Lizard's	Goanna	—	Static	analysis	for	C/C++	in	Eclipse	and	Visual	Studio.

.NET

Ada

C	/	C++

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-414
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-415
http://www.securityreviewer.com/

www.manaraa.com

SourceMeter	—	A	platform-independent,	command-line	static	source	code	analyzer	for	Java,	C/C++,	RPG	IV	(AS/400)	and	Python.

Jtest	—	Testing	and	static	code	analysis	product	by	Parasoft.
LDRA	Testbed	—	A	software	analysis	and	testing	tool	suite	for	Java.
SemmleCode	—	Object	oriented	code	queries	for	static	program	analysis.
SonarJ	—	Monitors	conformance	of	code	to	intended	architecture,	also	computes	a	wide	range	of	software	metrics.
Kalistick	—	A	Cloud-based	platform	to	manage	and	optimize	code	quality	for	Agile	teams	with	DevOps	spirit
SourceMeter	—	A	platform-independent,	command-line	static	source	code	analyzer	for	Java,	C/C++,	RPG	IV	(AS/400)	and	Python.

Tools	that	use	a	formal	methods	approach	to	static	analysis	(e.g.,	using	static	program	assertions):

ESC/Java	and	ESC/Java2	—	Based	on	Java	Modeling	Language,	an	enriched	version	of	Java.
Polyspace	—	Uses	abstract	interpretation	(a	formal	methods	based	technique[10])	to	detect	and	prove	the	absence	of	certain	run-time	errors	in	source	code	for	C,	C++,	and	Ada
SofCheck	Inspector	—	Statically	determines	and	documents	pre-	and	postconditions	for	Java	methods;	statically	checks	preconditions	at	all	call	sites;	also	supports	Ada.
SPARK	Toolset	including	the	SPARK	Examiner	—	Based	on	the	SPARK	programming	language,	a	subset	of	Ada.

1.	 "Static	Analysis	in	Xcode".	Apple.	http://developer.apple.com/mac/library/featuredarticles/StaticAnalysis/index.html
2.	 "Static	Analysis".	Oclint.	http://oclint.org/.	Retrieved	2015-09-06.
3.	 "Static	Analysis".	Faux	Pas.	http://fauxpasapp.com/.	Retrieved	2015-09-06.
4.	 "Static	Analysis".	Facebook.	http://fbinfer.com/.	Retrieved	2015-09-06.
5.	 "Static	Analysis	in	Sonar".	Boto.	https://github.com/octo-technology/sonar-objective-c.	Retrieved	2015-09-06.
6.	 "Static	Analysis".	Boto.	http://www.sonarsource.com/products/plugins/languages/objective-c/.	Retrieved	2015-09-06
7.	 Parasoft	Application	Security	Solution	(http://www.parasoft.com/jsp/solutions/application_security_solution.jsp?itemId=322)
8.	 Parasoft	Compliance	Solution	(http://www.parasoft.com/jsp/solutions/compliance.jsp?itemId=339)
9.	 SourceMeter	(https://www.sourcemeter.com)
10.	 Cousot,	Patrick	(2007).	"The	Role	of	Abstract	Interpretation	in	Formal	Methods".	IEEE	International	Conference	on	Software	Engineering	and	Formal	Methods

http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4343908%2F4343909%2F04343930.pdf%3Farnumber%3D4343930&authDecision=-203
Retrieved	2010-11-08.

Java	Static	Checkers	(http://www.dmoz.org//Computers/Programming/Languages/Java/Development_Tools/Performance_and_Testing/Static_Checkers/)
List	of	Java	static	code	analysis	plugins	for	Eclipse	(http://www.eclipseplugincentral.com/Web_Links-index-req-viewcatlink-cid-14-orderby-rating.html)
List	of	static	source	code	analysis	tools	for	C	(http://www.spinroot.com/static/)
List	of	Static	Source	Code	Analysis	Tools	(https://www.cert.org/secure-coding/tools.html)	at	CERT
SAMATE-Source	Code	Security	Analyzers	(http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html)
SATE	-	Static	Analysis	Tool	Exposition	(http://samate.nist.gov/SATE.html)
“A	Comparison	of	Bug	Finding	Tools	for	Java”	(http://www.cs.umd.edu/~jfoster/papers/issre04.pdf),	by	Nick	Rutar,	Christian	Almazan,	and	Jeff	Foster,	University	of	Maryland.
Compares	Bandera,	ESC/Java	2,	FindBugs,	JLint,	and	PMD.
“Mini-review	of	Java	Bug	Finders”	(http://www.oreillynet.com/digitalmedia/blog/2004/03/minireview_of_java_bug_finders.html)
Parallel	Lint	(http://www.ddj.com/218000153),	by	Andrey	Karpov
Integrate	static	analysis	into	a	software	development	process	(http://www.embedded.com/shared/printableArticle.jhtml?articleID=193500830)
static	analysis	into	a	software	development	process
Static	Analysis	Tools	for	C/C++	-	Polyspace	(http://www.mathworks.com/products/polyspace/index.html)
Errors	detected	in	Open	Source	projects	by	the	PVS-Studio	developers	through	static	analysis	(http://www.viva64.com/en/examples/)

In	software	engineering,	program	profiling,	software	profiling	or	simply	profiling,	a	form	of	dynamic	program	analysis	(as	opposed	to	static	code	analysis),	is	the	investigation	of
a	program's	behavior	using	 information	gathered	as	the	program	executes.	The	usual	purpose	of	this	analysis	 is	to	determine	which	sections	of	a	program	to	optimize	-	to	 increase	 its
overall	speed,	decrease	its	memory	requirement	or	sometimes	both.

Java

Formal	methods	tools

References

External	links

Profiling

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-417
http://developer.apple.com/mac/library/featuredarticles/StaticAnalysis/index.html
http://developer.apple.com/mac/library/featuredarticles/StaticAnalysis/index.html
http://oclint.org/
http://oclint.org/
http://fauxpasapp.com/
http://fauxpasapp.com/
http://fbinfer.com/
http://fbinfer.com/
https://github.com/octo-technology/sonar-objective-c
https://github.com/octo-technology/sonar-objective-c
http://www.sonarsource.com/products/plugins/languages/objective-c/
http://www.sonarsource.com/products/plugins/languages/objective-c/
http://www.parasoft.com/jsp/solutions/application_security_solution.jsp?itemId=322
http://www.parasoft.com/jsp/solutions/compliance.jsp?itemId=339
https://www.sourcemeter.com/
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4343908%2F4343909%2F04343930.pdf%3Farnumber%3D4343930&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4343908%2F4343909%2F04343930.pdf%3Farnumber%3D4343930&authDecision=-203
http://www.dmoz.org//Computers/Programming/Languages/Java/Development_Tools/Performance_and_Testing/Static_Checkers/
http://www.eclipseplugincentral.com/Web_Links-index-req-viewcatlink-cid-14-orderby-rating.html
http://www.spinroot.com/static/
https://www.cert.org/secure-coding/tools.html
http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
http://samate.nist.gov/SATE.html
http://www.cs.umd.edu/~jfoster/papers/issre04.pdf
http://www.oreillynet.com/digitalmedia/blog/2004/03/minireview_of_java_bug_finders.html
http://www.ddj.com/218000153
http://www.embedded.com/shared/printableArticle.jhtml?articleID=193500830
http://www.mathworks.com/products/polyspace/index.html
http://www.viva64.com/en/examples/

www.manaraa.com

A	(code)	profiler	is	a	performance	analysis	tool	that,	most	commonly,	measures	only	the	frequency	and	duration	of	function	calls,	but	there	are	other	specific	types	of	profilers
(e.g.	memory	profilers)	in	addition	to	more	comprehensive	profilers,	capable	of	gathering	extensive	performance	data.
An	instruction	set	simulator	which	is	also	—	by	necessity	—	a	profiler,	can	measure	the	totality	of	a	program's	behaviour	from	invocation	to	termination.

Profilers	 use	 a	 wide	 variety	 of	 techniques	 to	 collect	 data,	 including	 hardware	 interrupts,	 code	 instrumentation,	 instruction	 set	 simulation,	 operating	 system	 hooks,	 and	 performance
counters.	The	usage	of	profilers	is	'called	out'	in	the	performance	engineering	process.

Program	analysis	tools	are	extremely	important	for	understanding	program	behavior.	Computer	architects	need	such	tools	to	evaluate	how	well	programs	will	perform	on	new	architectures.
Software	writers	need	tools	to	analyze	their	programs	and	identify	critical	sections	of	code.	Compiler	writers	often	use	such	tools	to	find	out	how	well	their	instruction	scheduling	or	branch
prediction	algorithm	is	performing...	(ATOM,	PLDI,	'94)

The	output	of	a	profiler	may	be:-

A	statistical	summary	of	the	events	observed	(a	profile)

Summary	profile	information	is	often	shown	annotated	against	the	source	code	statements	where	the	events	occur,	so	the	size	of	measurement	data	is	linear	to	the	code	size	of	the
program.

/*	------------	source-------------------------	count	*/													
0001													IF	X	=	"A"																					0055
0002																THEN	DO																							
0003																		ADD	1	to	XCOUNT											0032
0004																ELSE
0005													IF	X	=	"B"																					0055

A	stream	of	recorded	events	(a	trace)

For	sequential	programs,	a	summary	profile	is	usually	sufficient,	but	performance	problems	in	parallel	programs	(waiting	for	messages	or	synchronization	issues)	often	depend	on	the
time	relationship	of	events,	thus	requiring	a	full	trace	to	get	an	understanding	of	what	is	happening.
The	size	of	a	(full)	trace	is	linear	to	the	program's	instruction	path	length,	making	it	somewhat	impractical.	A	trace	may	therefore	be	initiated	at	one	point	in	a	program	and
terminated	at	another	point	to	limit	the	output.

An	ongoing	interaction	with	the	hypervisor	(continuous	or	periodic	monitoring	via	on-screen	display	for	instance)

This	provides	the	opportunity	to	switch	a	trace	on	or	off	at	any	desired	point	during	execution	in	addition	to	viewing	on-going	metrics	about	the	(still	executing)	program.	It	also
provides	the	opportunity	to	suspend	asynchronous	processes	at	critical	points	to	examine	interactions	with	other	parallel	processes	in	more	detail.

Performance	analysis	tools	existed	on	IBM/360	and	IBM/370	platforms	from	the	early	1970s,	usually	based	on	timer	interrupts	which	recorded	the	Program	status	word	(PSW)	at	set
timer	 intervals	 to	 detect	 "hot	 spots"	 in	 executing	 code.	This	was	 an	 early	 example	 of	 sampling	 (see	 below).	 In	 early	 1974,	 Instruction	 Set	 Simulators	 permitted	 full	 trace	 and	 other
performance	monitoring	features.

Profiler-driven	program	analysis	on	Unix	dates	back	to	at	least	1979,	when	Unix	systems	included	a	basic	tool	"prof"	that	listed	each	function	and	how	much	of	program	execution	time	it
used.	In	1982,	gprof	extended	the	concept	to	a	complete	call	graph	analysis	[1]

In	1994,	Amitabh	Srivastava	and	Alan	Eustace	of	Digital	Equipment	Corporation	published	a	paper	describing	ATOM.
profiler.	That	is,	at	compile	time,	it	inserts	code	into	the	program	to	be	analyzed.	That	inserted	code	outputs	analysis	data.	This	technique	-	modifying	a	program	to	analyze	itself	-	is
known	as	"instrumentation".

In	2004,	both	the	gprof	and	ATOM	papers	appeared	on	the	list	of	the	50	most	influential	PLDI	papers	of	all	time.[3]

Flat	profilers	compute	the	average	call	times,	from	the	calls,	and	do	not	break	down	the	call	times	based	on	the	callee	or	the	context.

Call	graph	profilers	show	the	call	times,	and	frequencies	of	the	functions,	and	also	the	call-chains	involved	based	on	the	callee.	However	context	is	not	preserved.

Gathering	program	events

Use	of	profilers

History

Profiler	types	based	on	output

Flat	profiler

Call-graph	profiler

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-418
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-420

www.manaraa.com

The	programming	languages	listed	here	have	event-based	profilers:

Java:	the	JVMTI	(JVM	Tools	Interface)	API,	formerly	JVMPI	(JVM	Profiling	Interface),	provides	hooks	to	profilers,	for	trapping	events	like	calls,	class-load,	unload,	thread	enter
leave.
.NET:	Can	attach	a	profiling	agent	as	a	COM	server	to	the	CLR.	Like	Java,	the	runtime	then	provides	various	callbacks	into	the	agent,	for	trapping	events	like	method	JIT	/	enter	/
leave,	object	creation,	etc.	Particularly	powerful	in	that	the	profiling	agent	can	rewrite	the	target	application's	bytecode	in	arbitrary	ways.
Python:	Python	profiling	includes	the	profile	module,	hotshot	(which	is	call-graph	based),	and	using	the	'sys.setprofile'	function	to	trap	events	like	c_{call,return,exception},
python_{call,return,exception}.
Ruby:	Ruby	also	uses	a	similar	interface	like	Python	for	profiling.	Flat-profiler	in	profile.rb,	module,	and	ruby-prof	a	C-extension	are	present.

Some	profilers	operate	by	sampling.	A	sampling	profiler	probes	the	target	program's	program	counter	at	regular	intervals	using	operating	system	interrupts.	Sampling	profiles	are	typically
less	numerically	accurate	and	specific,	but	allow	the	target	program	to	run	at	near	full	speed.

The	resulting	data	are	not	exact,	but	a	statistical	approximation.	The	actual	amount	of	error	is	usually	more	than	one	sampling	period.	In	fact,	if	a	value	is	n	times	the	sampling	period,
the	expected	error	in	it	is	the	square-root	of	n	sampling	periods.	[4]

In	practice,	sampling	profilers	can	often	provide	a	more	accurate	picture	of	the	target	program's	execution	than	other	approaches,	as	they	are	not	as	intrusive	to	the	target	program,	and
thus	don't	have	as	many	side	effects	(such	as	on	memory	caches	or	instruction	decoding	pipelines).	Also	since	they	don't	affect	the	execution	speed	as	much,	they	can	detect	issues	that
would	otherwise	be	hidden.	They	are	also	relatively	immune	to	over-evaluating	the	cost	of	small,	frequently	called	routines	or	'tight'	loops.	They	can	show	the	relative	amount	of	time
spent	in	user	mode	versus	interruptible	kernel	mode	such	as	system	call	processing.

Still,	kernel	code	to	handle	the	interrupts	entails	a	minor	loss	of	CPU	cycles,	diverted	cache	usage,	and	is	unable	to	distinguish	the	various	tasks	occurring	in	uninterruptible	kernel	code
(microsecond-range	activity).

Dedicated	hardware	can	go	beyond	this:	some	recent	MIPS	processors	JTAG	interface	have	a	PCSAMPLE	register,	which	samples	the	program	counter	in	a	truly	undetectable	manner.

Some	of	the	most	commonly	used	statistical	profilers	are	AMD	CodeAnalyst,	Apple	Inc.	Shark,	gprof,	Intel	VTune	and	Parallel	Amplifier	(part	of	Intel	Parallel	Studio).

Some	profilers	instrument	the	target	program	with	additional	instructions	to	collect	the	required	information.

Instrumenting	the	program	can	cause	changes	in	the	performance	of	the	program,	potentially	causing	inaccurate	results	and	heisenbugs.	Instrumenting	will	always	have	some	impact	on	the
program	execution,	typically	always	slowing	it.	However,	instrumentation	can	be	very	specific	and	be	carefully	controlled	to	have	a	minimal	impact.	The	impact	on	a	particular	program
depends	on	the	placement	of	instrumentation	points	and	the	mechanism	used	to	capture	the	trace.	Hardware	support	for	trace	capture	means	that	on	some	targets,	instrumentation	can	be
on	just	one	machine	instruction.	The	impact	of	instrumentation	can	often	be	deducted	(i.e.	eliminated	by	subtraction)	from	the	results.

gprof	is	an	example	of	a	profiler	that	uses	both	instrumentation	and	sampling.	Instrumentation	is	used	to	gather	caller	information	and	the	actual	timing	values	are	obtained	by	statistical
sampling.

Manual:	Performed	by	the	programmer,	e.g.	by	adding	instructions	to	explicitly	calculate	runtimes,	simply	count	events	or	calls	to	measurement	APIs	such	as	the	Application
Response	Measurement	standard.
Automatic	source	level:	instrumentation	added	to	the	source	code	by	an	automatic	tool	according	to	an	instrumentation	policy.
Compiler	assisted:	Example:	"gcc	-pg	..."	for	gprof,	"quantify	g++	..."	for	Quantify
Binary	translation:	The	tool	adds	instrumentation	to	a	compiled	binary.	Example:	ATOM
Runtime	instrumentation:	Directly	before	execution	the	code	is	instrumented.	The	program	run	is	fully	supervised	and	controlled	by	the	tool.	Examples:	Pin,	Valgrind
Runtime	injection:	More	lightweight	than	runtime	instrumentation.	Code	is	modified	at	runtime	to	have	jumps	to	helper	functions.	Example:	DynInst

Interpreter	debug	options	can	enable	the	collection	of	performance	metrics	as	the	interpreter	encounters	each	target	statement.	A	bytecode,	control	table	or	JIT	interpreters	are
three	examples	that	usually	have	complete	control	over	execution	of	the	target	code,	thus	enabling	extremely	comprehensive	data	collection	opportunities.

Hypervisor:	Data	are	collected	by	running	the	(usually)	unmodified	program	under	a	hypervisor.	Example:	SIMMON
Simulator	and	Hypervisor:	Data	collected	interactively	and	selectively	by	running	the	unmodified	program	under	an	Instruction	Set	Simulator.	Examples:	SIMON	(Batch
Interactive	test/debug)	and	IBM	OLIVER	(CICS	interactive	test/debug).

Methods	of	data	gathering

Event-based	profilers

Statistical	profilers

Instrumenting	profilers

Instrumentation

Interpreter	instrumentation

Hypervisor/Simulator

References

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-421

www.manaraa.com

1.	 gprof:	a	Call	Graph	Execution	Profiler	(http://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf)
2.	 Atom:	A	system	for	building	customized	program	analysis	tools,	Amitabh	Srivastava	and	Alan	Eustace,	1994	(http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.8540)
(download	(http://www.ece.cmu.edu/~ece548/tools/atom/man/wrl_94_2.pdf))

3.	 20	Years	of	PLDI	(1979	-	1999):	A	Selection,	Kathryn	S.	McKinley,	Editor	(http://www.cs.utexas.edu/users/mckinley/20-years.html)
4.	 Statistical	Inaccuracy	of	gprof	Output	(http://lgl.epfl.ch/teaching/case_tools/doc/gprof/gprof_12.html)

Dunlavey,	“Performance	tuning	with	instruction-level	cost	derived	from	call-stack	sampling”,	ACM	SIGPLAN	Notices	42,	8	(August,	2007),	pp.	4–8.
Dunlavey,	“Performance	Tuning:	Slugging	It	Out!”,	Dr.	Dobb's	Journal,	Vol	18,	#12,	November	1993,	pp	18–26.

Article	"Need	for	speed	—	Eliminating	performance	bottlenecks	(http://www.ibm.com/developerworks/rational/library/05/1004_gupta/)
applications	using	IBM	Rational	Application	Developer.
Profiling	Runtime	Generated	and	Interpreted	Code	using	the	VTune™	Performance	Analyzer	(http://software.intel.com/sites/products/documentation/hpc/vtune/windows/jit_profili
ng.pdf)

Code	coverage	is	a	measure	used	in	software	testing.	It	describes	the	degree	to	which	the	source	code	of	a	program	has	been	tested.	It	is	a	form	of	testing	that	inspects	the	code	directly
and	is	therefore	a	form	of	white	box	testing.[1]	In	time,	the	use	of	code	coverage	has	been	extended	to	the	field	of	digital	hardware,	the	contemporary	design	methodology	of	which	relies	on
hardware	description	languages	(HDLs).

Code	coverage	was	among	the	first	methods	invented	for	systematic	software	testing.	The	first	published	reference	was	by	Miller	and	Maloney	in	

Code	coverage	 is	one	consideration	in	the	safety	certification	of	avionics	equipment.	The	standard	by	which	avionics	gear	 is	certified	by	the	Federal	Aviation	Administration	(FAA)	is
documented	in	DO-178B.[2]

To	measure	how	well	the	program	is	exercised	by	a	test	suite,	one	or	more	coverage	criteria	are	used.

There	are	a	number	of	coverage	criteria,	the	main	ones	being:[3]

Function	coverage	-	Has	each	function	(or	subroutine)	in	the	program	been	called?
Statement	coverage	-	Has	each	node	in	the	program	been	executed?
Decision	coverage	(not	the	same	as	branch	coverage	-	see	Position	Paper	CAST10.[4])	-	Has	every	edge	in	the	program	been	executed?	For	instance,	have	the	requirements	of
each	branch	of	each	control	structure	(such	as	in	IF	and	CASE	statements)	been	met	as	well	as	not	met?
Condition	coverage	(or	predicate	coverage)	-	Has	each	boolean	sub-expression	evaluated	both	to	true	and	false?	This	does	not	necessarily	imply	decision	coverage.
Condition/decision	coverage	-	Both	decision	and	condition	coverage	should	be	satisfied.

For	example,	consider	the	following	C++	function:

int	foo(int	x,	int	y)
{
				int	z	=	0;
				if	((x>0)	&&	(y>0))	{
								z	=	x;
				}
				return	z;
}

Assume	this	function	is	a	part	of	some	bigger	program	and	this	program	was	run	with	some	test	suite.

If	during	this	execution	function	'foo'	was	called	at	least	once,	then	function	coverage	for	this	function	is	satisfied.
Statement	coverage	for	this	function	will	be	satisfied	if	it	was	called	e.g.	as	foo(1,1),	as	in	this	case,	every	line	in	the	function	is	executed	including	
Tests	calling	foo(1,1)	and	foo(1,0)	will	satisfy	decision	coverage,	as	in	the	first	case	the	if	condition	is	satisfied	and	
Condition	coverage	can	be	satisfied	with	tests	that	call	foo(1,1),	foo(1,0)	and	foo(0,0).	These	are	necessary	as	in	the	first	two	cases	
evaluates	false.	At	the	same	time,	the	first	case	makes	(y>0)	true	while	the	second	and	third	make	it	false.

In	languages,	like	Pascal,	where	standard	boolean	operations	are	not	short	circuited,	condition	coverage	does	not	necessarily	imply	decision	coverage.	For	example,	consider	the	following

External	links

Code	Coverage

Coverage	criteria

Basic	coverage	criteria

http://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.8540
http://www.ece.cmu.edu/~ece548/tools/atom/man/wrl_94_2.pdf
http://www.cs.utexas.edu/users/mckinley/20-years.html
http://lgl.epfl.ch/teaching/case_tools/doc/gprof/gprof_12.html
http://www.ibm.com/developerworks/rational/library/05/1004_gupta/
http://software.intel.com/sites/products/documentation/hpc/vtune/windows/jit_profiling.pdf
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-422
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-423
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-424
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Position_Paper_CAST10-425

www.manaraa.com

In	languages,	like	Pascal,	where	standard	boolean	operations	are	not	short	circuited,	condition	coverage	does	not	necessarily	imply	decision	coverage.	For	example,	consider	the	following
fragment	of	code:

if	a	and	b	then

Condition	coverage	can	be	satisfied	by	two	tests:

a=true,	b=false
a=false,	b=true

However,	this	set	of	tests	does	not	satisfy	decision	coverage	as	in	neither	case	will	the	if	condition	be	met.

Fault	injection	may	be	necessary	to	ensure	that	all	conditions	and	branches	of	exception	handling	code	have	adequate	coverage	during	testing.

For	 safety-critical	 applications	 (e.g.	 for	 avionics	 software)	 it	 is	 often	 required	 that	modified	 condition/decision	 coverage	 (MC/DC)
condition/decision	criteria	with	requirements	that	each	condition	should	affect	the	decision	outcome	independently.	For	example,	consider	the	following	code:

if	(a	or	b)	and	c	then

The	condition/decision	criteria	will	be	satisfied	by	the	following	set	of	tests:

a=true,	b=true,	c=true
a=false,	b=false,	c=false

However,	the	above	tests	set	will	not	satisfy	modified	condition/decision	coverage,	since	in	the	first	test,	the	value	of	'b'	and	in	the	second	test	the	value	of	'c'	would	not	influence	the
output.	So,	the	following	test	set	is	needed	to	satisfy	MC/DC:

a=false,	b=false,	c=true
a=true,	b=false,	c=true
a=false,	b=true,	c=true
a=true,	b=true,	c=false

The	bold	values	influence	the	output,	each	variable	must	be	present	as	an	influencing	value	at	least	once	with	false	and	once	with	true.

This	criteria	requires	that	all	combinations	of	conditions	inside	each	decision	are	tested.	For	example,	the	code	fragment	from	the	previous	section	will	require	eight	tests:

a=false,	b=false,	c=false
a=false,	b=false,	c=true
a=false,	b=true,	c=false
a=false,	b=true,	c=true
a=true,	b=false,	c=false
a=true,	b=false,	c=true
a=true,	b=true,	c=false
a=true,	b=true,	c=true

There	are	further	coverage	criteria,	which	are	used	less	often:

Linear	Code	Sequence	and	Jump	(LCSAJ)	coverage	-	has	every	LCSAJ	been	executed?
JJ-Path	coverage	-	have	all	jump	to	jump	paths	[5]	(aka	LCSAJs)	been	executed?
Path	coverage	-	Has	every	possible	route	through	a	given	part	of	the	code	been	executed?
Entry/exit	coverage	-	Has	every	possible	call	and	return	of	the	function	been	executed?
Loop	coverage	-	Has	every	possible	loop	been	executed	zero	times,	once,	and	more	than	once?

Safety-critical	applications	are	often	required	to	demonstrate	that	testing	achieves	100%	of	some	form	of	code	coverage.

Some	of	the	coverage	criteria	above	are	connected.	For	instance,	path	coverage	implies	decision,	statement	and	entry/exit	coverage.	Decision	coverage	implies	statement	coverage,	because
every	statement	is	part	of	a	branch.

Full	path	coverage,	of	the	type	described	above,	is	usually	impractical	or	impossible.	Any	module	with	a	succession	of	

Modified	condition/decision	coverage

Multiple	condition	coverage

Other	coverage	criteria

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-On_the_relationship_between_two_control-flow_coverage_criteria:_all_JJ-paths_and_MCDC-426

www.manaraa.com

Full	path	coverage,	of	the	type	described	above,	is	usually	impractical	or	impossible.	Any	module	with	a	succession	of	
can	result	 in	an	 infinite	number	of	paths.	Many	paths	may	also	be	 infeasible,	 in	that	there	 is	no	 input	to	the	program	under	test	that	can	cause	that	particular	path	to	be	executed.
However,	a	general-purpose	algorithm	for	 identifying	 infeasible	paths	has	been	proven	to	be	 impossible	(such	an	algorithm	could	be	used	to	solve	the	halting	problem).
practical	path	coverage	testing	instead	attempt	to	identify	classes	of	code	paths	that	differ	only	in	the	number	of	loop	executions,	and	to	achieve	"basis	path"	coverage	the	tester	must
cover	all	the	path	classes.

The	target	software	is	built	with	special	options	or	libraries	and/or	run	under	a	special	environment	such	that	every	function	that	is	exercised	(executed)	in	the	program(s)	is	mapped	back
to	the	 function	points	 in	the	source	code.	This	process	allows	developers	and	quality	assurance	personnel	to	 look	 for	parts	of	a	system	that	are	rarely	or	never	accessed	under	normal
conditions	(error	handling	and	the	like)	and	helps	reassure	test	engineers	that	the	most	important	conditions	(function	points)	have	been	tested.	The	resulting	output	is	then	analyzed	to
see	what	areas	of	code	have	not	been	exercised	and	the	tests	are	updated	to	include	these	areas	as	necessary.	Combined	with	other	code	coverage	methods,	the	aim	is	to	develop	a	rigorous,
yet	manageable,	set	of	regression	tests.

In	implementing	code	coverage	policies	within	a	software	development	environment	one	must	consider	the	following:

What	are	coverage	requirements	for	the	end	product	certification	and	if	so	what	level	of	code	coverage	is	required?	The	typical	level	of	rigor	progression	is	as	follows:	Statement,
Branch/Decision,	Modified	Condition/Decision	Coverage(MC/DC),	LCSAJ	(Linear	Code	Sequence	and	Jump)
Will	code	coverage	be	measured	against	tests	that	verify	requirements	levied	on	the	system	under	test	(DO-178B)?
Is	the	object	code	generated	directly	traceable	to	source	code	statements?	Certain	certifications,	(ie.	DO-178B	Level	A)	require	coverage	at	the	assembly	level	if	this	is	not	the	case:
"Then,	additional	verification	should	be	performed	on	the	object	code	to	establish	the	correctness	of	such	generated	code	sequences"	(DO-178B)	para-6.4.4.2.

Test	engineers	can	look	at	code	coverage	test	results	to	help	them	devise	test	cases	and	input	or	configuration	sets	that	will	increase	the	code	coverage	over	vital	functions.	Two	common
forms	of	code	coverage	used	by	testers	are	statement	(or	line)	coverage	and	path	(or	edge)	coverage.	Line	coverage	reports	on	the	execution	footprint	of	testing	in	terms	of	which	lines	of
code	were	executed	to	complete	the	test.	Edge	coverage	reports	which	branches	or	code	decision	points	were	executed	to	complete	the	test.	They	both	report	a	coverage	metric,	measured
as	a	percentage.	The	meaning	of	this	depends	on	what	form(s)	of	code	coverage	have	been	used,	as	67%	path	coverage	is	more	comprehensive	than	67%	statement	coverage.

Generally,	code	coverage	tools	and	libraries	exact	a	performance	and/or	memory	or	other	resource	cost	which	is	unacceptable	to	normal	operations	of	the	software.	Thus,	they	are	only
used	in	the	lab.	As	one	might	expect,	there	are	classes	of	software	that	cannot	be	feasibly	subjected	to	these	coverage	tests,	though	a	degree	of	coverage	mapping	can	be	approximated
through	analysis	rather	than	direct	testing.

There	are	also	some	sorts	of	defects	which	are	affected	by	such	tools.	 In	particular,	some	race	conditions	or	similar	real	time	sensitive	operations	can	be	masked	when	run	under	code
coverage	environments;	and	conversely,	some	of	these	defects	may	become	easier	to	find	as	a	result	of	the	additional	overhead	of	the	testing	code.

VectorCAST
Parasoft	C++test
Cantata++
Insure++
IBM	Rational	Pure	Coverage
Tessy
Testwell	CTC++
Trucov
CodeScroll

Parasoft	dotTEST
NCover
Testwell	CTC++	(with	C#	add	on)

Parasoft	Jtest
Clover
Cobertura
Structure	101
EMMA
Serenity
Testwell	CTC++	(with	Java	and	Android	add	on)

In	practice

Software	tools

Tools	for	C	/	C++

Tools	for	C#	.NET

Tools	for	Java

Tools	for	PHP

www.manaraa.com

PHPUnit,	also	need	Xdebug	to	make	coverage	reports

Aldec
Atrenta
Cadence	Design	Systems
JEDA	Technologies
Mentor	Graphics
Nusym	Technology
Simucad	Design	Automation
Synopsys

1.	 Kolawa,	Adam;	Huizinga,	Dorota	(2007).	Automated	Defect	Prevention:	Best	Practices	in	Software	Management
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html.

2.	 RTCA/DO-178(b),	Software	Considerations	in	Airborne	Systems	and	Equipment	Certification,	Radio	Technical	Commission	for	Aeronautics,
3.	 Glenford	J.	Myers	(2004).	The	Art	of	Software	Testing,	2nd	edition.	Wiley.	ISBN	0471469122.
4.	 [8]	(http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-10.pdf)
5.	 M.	R.	Woodward,	M.	A.	Hennell,	"On	the	relationship	between	two	control-flow	coverage	criteria:	all	JJ-paths	and	MCDC",	Information	and	Software	Technology	48	(2006)	pp.	433-
440

6.	 Dorf,	Richard	C.:	Computers,	Software	Engineering,	and	Digital	Devices,	Chapter	12,	pg.	15.	CRC	Press,	2006.	ISBN	0849373409
s.google.com/books?id=jykvlTCoksMC&pg=PT386&lpg=PT386&dq=%22infeasible+path%22+%22halting+problem%22&source=web&ots=WUWz3qMPRv&sig=dSAjrLHBSZJcKW
ZfGa_IxYlfSNA&hl=en&sa=X&oi=book_result&resnum=1&ct=result)

7.	 Software	Considerations	in	Airborne	System	and	Equipment	Certification-RTCA/DO-178B,	RTCA	Inc.,	Washington	D.C.,	December	1992

Branch	Coverage	for	Arbitrary	Languages	Made	Easy	(http://www.semdesigns.com/Company/Publications/TestCoverage.pdf)
Code	Coverage	Analysis	(http://www.bullseye.com/coverage.html)	by	Steve	Cornett
Code	Coverage	Introduction	(http://www.javaranch.com/newsletter/200401/IntroToCodeCoverage.html)
Comprehensive	paper	on	Code	Coverage	&	tools	selection	(http://archive.is/20121127093400/qualinfra.blogspot.com/2010/02/code-coverage.html)
Jayachandran
Development	Tools	(Java)	(http://www.dmoz.org//Computers/Programming/Languages/Java/Development_Tools/Performance_and_Testing/Code_Coverage/)
Development	Tools	(General)	(http://www.dmoz.org//Computers/Programming/Software_Testing/Products_and_Tools/)
Systematic	mistake	analysis	of	digital	computer	programs	(http://doi.acm.org/10.1145/366246.366248)
FAA	CAST	Position	Papers	[15]	(http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-10.pdf)

Project	management	software	is	a	term	covering	many	types	of	software,	including	estimation	and	planning,	scheduling,	cost	control	and	budget	management,	resource	allocation,
collaboration	software,	communication,	quality	management	and	documentation	or	administration	systems,	which	are	used	to	deal	with	the	complexity	of	large	projects.

One	of	the	most	common	purposes	is	to	schedule	a	series	of	events	or	tasks	and	the	complexity	of	the	schedule	can	vary	considerably	depending	on	how	the	tool	is	used.	Some	common
challenges	include:

Events	which	depend	on	one	another	in	different	ways	or	dependencies
Scheduling	people	to	work	on,	and	resources	required	by,	the	various	tasks,	commonly	termed	resource	scheduling
Dealing	with	uncertainties	in	the	estimates	of	the	duration	of	each	task

Project	planning	software	can	be	expected	to	provide	information	to	various	people	or	stakeholders,	and	can	be	used	to	measure	and	justify	the	level	of	effort	required	to	complete	the
project(s).	Typical	requirements	might	include:

Hardware	tools

Notes

External	links

Project	Management

Tasks	or	activities	of	project	management	software

Scheduling

Providing	information

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
https://en.wikibooks.org/wiki/Special:BookSources/0471469122
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-10.pdf
https://en.wikibooks.org/wiki/Special:BookSources/0849373409
http://books.google.com/books?id=jykvlTCoksMC&pg=PT386&lpg=PT386&dq=%22infeasible+path%22+%22halting+problem%22&source=web&ots=WUWz3qMPRv&sig=dSAjrLHBSZJcKWZfGa_IxYlfSNA&hl=en&sa=X&oi=book_result&resnum=1&ct=result
http://www.semdesigns.com/Company/Publications/TestCoverage.pdf
http://www.bullseye.com/coverage.html
http://www.javaranch.com/newsletter/200401/IntroToCodeCoverage.html
http://archive.is/20121127093400/qualinfra.blogspot.com/2010/02/code-coverage.html
http://www.dmoz.org//Computers/Programming/Languages/Java/Development_Tools/Performance_and_Testing/Code_Coverage/
http://www.dmoz.org//Computers/Programming/Software_Testing/Products_and_Tools/
http://doi.acm.org/10.1145/366246.366248
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-10.pdf

www.manaraa.com

Tasks	lists	for	people,	and	allocation	schedules	for	resources
Overview	information	on	how	long	tasks	will	take	to	complete
Early	warning	of	any	risks	to	the	project
Information	on	workload,	for	planning	holidays
Evidence
Historical	information	on	how	projects	have	progressed,	and	in	particular,	how	actual	and	planned	performance	are	related
Optimum	utilization	of	available	resource

Project	management	software	can	be	implemented	as	a	program	that	runs	on	the	desktop	of	each	user.	This	typically	gives	the	most	responsive	and	graphically-intense	style	of	interface.

Desktop	applications	typically	store	their	data	in	a	file,	although	some	have	the	ability	to	collaborate	with	other	users	(see	below),	or	to	store	their	data	in	a	central	database.	Even	a	file-
based	project	plan	can	be	shared	between	users	if	it's	on	a	networked	drive	and	only	one	user	accesses	it	at	a	time.

Desktop	applications	can	be	written	to	run	in	a	heterogeneous	environment	of	multiple	operating	systems,	although	it's	unusual.

Project	management	software	can	be	implemented	as	a	Web	application,	accessed	through	an	intranet,	or	an	extranet	using	a	web	browser.

This	has	all	the	usual	advantages	and	disadvantages	of	web	applications:

Can	be	accessed	from	any	type	of	computer	without	installing	software	on	user's	computer
Ease	of	access-control
Naturally	multi-user
Only	one	software	version	and	installation	to	maintain
Centralized	data	repository
Typically	slower	to	respond	than	desktop	applications
Project	information	not	available	when	the	user	(or	server)	is	offline
Some	solutions	allow	the	user	to	go	offline	with	a	copy	of	the	data

A	personal	project	management	application	is	one	used	at	home,	typically	to	manage	lifestyle	or	home	projects.	There	is	considerable	overlap	with	
project	management	software	typically	involves	simpler	interfaces.	See	also	non-specialised	tools	below.

A	single-user	system	is	programmed	with	the	assumption	that	only	one	person	will	ever	need	to	edit	the	project	plan	at	once.	This	may	be	used	in	small	companies,	or	ones	where	only	a
few	people	are	involved	in	top-down	project	planning.	Desktop	applications	generally	fall	into	this	category.

A	collaborative	system	is	designed	to	support	multiple	users	modifying	different	sections	of	the	plan	at	once;	for	example,	updating	the	areas	they	personally	are	responsible	for	such	that
those	estimates	get	integrated	into	the	overall	plan.	Web-based	tools,	including	extranets,	generally	fall	into	this	category,	but	have	the	limitation	that	they	can	only	be	used	when	the	user
has	live	Internet	access.	To	address	this	limitation,	some	software	tools	using	client–server	architecture	provide	a	rich	client	that	runs	on	users'	desktop	computer	and	replicate	project	and
task	information	to	other	project	team	members	through	a	central	server	when	users	connect	periodically	to	the	network.	Some	tools	allow	team	members	to	check	out	their	schedules	(and
others'	as	read	only)	to	work	on	them	while	not	on	the	network.	When	reconnecting	to	the	database,	all	changes	are	synchronized	with	the	other	schedules.

An	integrated	system	combines	project	management	or	project	planning,	with	many	other	aspects	of	company	life.	For	example,	projects	can	have	bug	tracking	issues	assigned	to	each
project,	 the	 list	 of	 project	 customers	 becomes	 a	 customer	 relationship	management	module,	 and	 each	 person	 on	 the	 project	 plan	 has	 their	 own	 task	 lists,	 calendars,	 and	messaging
functionality	associated	with	their	projects.

Similarly,	specialised	tools	like	SourceForge	integrate	project	management	software	with	source	control	(CVS)	software	and	bug-tracking	software,	so	that	each	piece	of	information	can	be
integrated	into	the	same	system.

While	specialised	software	may	be	common,	and	heavily	promoted	by	each	vendor,	there	are	a	vast	range	of	other	software	(and	non-software)	tools	used	to	plan	and	schedule	projects.

Calendaring	software	can	often	handle	scheduling	as	easily	as	dedicated	software
Spreadsheets	are	very	versatile,	and	can	be	used	to	calculate	things	not	anticipated	by	the	designers.

The	following	may	apply	in	general,	or	to	specific	products,	or	to	some	specific	functions	within	products.

Approaches	to	project	management	software

Desktop

Web-based

Personal

Single	user

Collaborative

Integrated

Non-specialised	tools

Criticisms	of	project	management	software

www.manaraa.com

May	not	be	derived	from	a	sound	project	management	method.	For	example,	displaying	the	Gantt	chart	view	by	default	encourages	users	to	focus	on	timed	task	scheduling	too	early,
rather	than	identifying	objectives,	deliverables	and	the	imposed	logical	progress	of	events	(dig	the	trench	first	to	put	in	the	drain	pipe).
May	be	inconsistent	with	the	type	of	project	management	method.	For	example,	traditional	(e.g.	Waterfall)	vs.	agile	(e.g.	Scrum).
Focuses	primarily	on	the	planning	phase	and	does	not	offer	enough	functionality	for	project	tracking,	control	and	in	particular	plan-adjustment.	There	may	be	excessive	dependency	on
the	first	paper	print-out	of	a	project	plan,	which	is	simply	a	snapshot	at	one	moment	in	time.	The	plan	is	dynamic;	as	the	project	progresses	the	plan	must	change	to	accommodate
tasks	that	are	completed	early,	late,	re-sequenced,	etc.	Good	management	software	should	not	only	facilitate	this,	but	assist	with	impact	assessment	and	communication	of	plan
changes.
Does	not	make	a	clear	distinction	between	the	planning	phase	and	post	planning	phase,	leading	to	user	confusion	and	frustration	when	the	software	does	not	behave	as	expected.	For
example,	shortening	the	duration	of	a	task	when	an	additional	human	resource	is	assigned	to	it	while	the	project	is	still	being	planned.
Offer	complicated	features	to	meet	the	needs	of	project	management	or	project	scheduling	professionals,	which	must	be	understood	in	order	to	effectively	use	the	product.	Additional
features	may	be	so	complicated	as	to	be	of	no	use	to	anyone.	Complex	task	prioritization	and	resource	leveling	algorithms	for	example	can	produce	results	that	make	no	intuitive	sense,
and	overallocation	is	often	more	simply	resolved	manually.
Some	people	may	achieve	better	results	using	simpler	technique,	(e.g.	pen	and	paper),	yet	feel	pressured	into	using	project	management	software	by	company	policy	(
www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=00008c&topic_id=1&topic=)).
Similar	to	PowerPoint,	project	management	software	might	shield	the	manager	from	important	interpersonal	contact.
New	types	of	software	are	challenging	the	traditional	definition	of	Project	Management.	Frequently,	users	of	project	management	software	are	not	actually	managing	a	discrete	project.
For	instance,	managing	the	ongoing	marketing	for	an	already-released	product	is	not	a	"project"	in	the	traditional	sense	of	the	term;	it	does	not	involve	management	of	discrete
resources	working	on	something	with	a	discrete	beginning/end.	Groupware	applications	now	add	"project	management"	features	that	directly	support	this	type	of	workflow-oriented
project	management.	Classically-trained	Project	Managers	may	argue	whether	this	is	"sound	project	management."	However,	the	end-users	of	such	tools	will	refer	to	it	as	such,	and	the
de-facto	definition	of	the	term	Project	Management	may	change.
When	there	are	multiple	larger	projects,	project	management	software	can	be	very	useful.	Nevertheless,	one	should	probably	not	use	management	software	if	only	a	single	small	project
is	involved,	as	management	software	incurs	a	larger	time-overhead	than	is	worthwhile.

Eric	Uyttewaal:	Dynamic	Scheduling	With	Microsoft(r)	Project	2000:	The	Book	By	and	For	Professionals,	ISBN	0-9708276-0-1
George	Suhanic:	Computer-Aided	Project	Management,	ISBN	0-19-511591-0
Richard	E.	Westney:	Computerized	Management	of	Multiple	Small	Projects,	ISBN	0-8247-8645-9

In	software	engineering,	continuous	integration	(CI)	implements	continuous	processes	of	applying	quality	control	—	small	pieces	of	effort,	applied	frequently.	Continuous	integration
aims	to	improve	the	quality	of	software,	and	to	reduce	the	time	taken	to	deliver	it,	by	replacing	the	traditional	practice	of	applying	quality	control	

When	embarking	on	a	change,	a	developer	takes	a	copy	of	the	current	code	base	on	which	to	work.	As	other	developers	submit	changed	code	to	the	code	repository,	this	copy	gradually
ceases	to	reflect	the	repository	code.	When	developers	submit	code	to	the	repository	they	must	first	update	their	code	to	reflect	the	changes	in	the	repository	since	they	took	their	copy.
The	more	changes	the	repository	contains,	the	more	work	developers	must	do	before	submitting	their	own	changes.

Eventually,	the	repository	may	become	so	different	from	the	developers'	baselines	that	they	enter	what	is	sometimes	called	"integration	hell",
the	time	it	took	to	make	their	original	changes.	In	a	worst-case	scenario,	developers	may	have	to	discard	their	changes	and	completely	redo	the	work.

Continuous	integration	involves	integrating	early	and	often,	so	as	to	avoid	the	pitfalls	of	"integration	hell".	The	practice	aims	to	reduce	rework	and	thus	reduce	cost	and	time.

The	rest	of	this	article	discusses	best	practice	in	how	to	achieve	continuous	integration,	and	how	to	automate	this	practice.	Automation	is	a	best	practice	itself.

Continuous	integration	-	as	the	practice	of	frequently	integrating	one's	new	or	changed	code	with	the	existing	code	repository	-	should	occur	frequently	enough	that	no	intervening	window
remains	between	commit	and	build,	and	such	that	no	errors	can	arise	without	developers	noticing	them	and	correcting	them	immediately.
every	commit	to	a	repository,	rather	than	a	periodically	scheduled	build.	The	practicalities	of	doing	this	 in	a	multi-developer	environment	of	rapid	commits	are	such	that	 it's	usual	to
trigger	a	short	timer	after	each	commit,	then	to	start	a	build	when	either	this	timer	expires,	or	after	a	rather	longer	interval	since	the	last	build.	Automated	tools	such	as	CruiseControl	or
Hudson	offer	this	scheduling	automatically.

Another	factor	is	the	need	for	a	version	control	system	that	supports	atomic	commits,	i.e.	all	of	a	developer's	changes	may	be	seen	as	a	single	commit	operation.	There	is	no	point	in	trying
to	build	from	only	half	of	the	changed	files.

This	practice	advocates	the	use	of	a	revision	control	system	for	the	project's	source	code.	All	artifacts	required	to	build	the	project	should	be	placed	in	the	repository.	In	this	practice	and
in	the	revision	control	community,	the	convention	is	that	the	system	should	be	buildable	from	a	fresh	checkout	and	not	require	additional	dependencies.	Extreme	Programming	advocate
Martin	Fowler	also	mentions	 that	where	branching	 is	 supported	by	tools,	 its	use	 should	be	minimised[citation	needed
creating	multiple	versions	of	the	software	that	are	maintained	simultaneously.	The	mainline	(or	trunk)	should	be	the	place	for	the	working	version	of	the	software.

Books

Continuous	Integration

Theory

Recommended	practices

Maintain	a	code	repository

Automate	the	build

http://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=00008c&topic_id=1&topic=
https://en.wikibooks.org/wiki/Special:BookSources/0-9708276-0-1
https://en.wikibooks.org/wiki/Special:BookSources/0-19-511591-0
https://en.wikibooks.org/wiki/Special:BookSources/0-8247-8645-9
https://en.wikibooks.org/wiki/Wikibooks:OR

www.manaraa.com

A	single	command	should	have	the	capability	of	building	the	system.	Many	build-tools,	such	as	make,	have	existed	for	many	years.	Other	more	recent	tools	like	Ant,	Maven,	MSBuild	or
IBM	 Rational	 Build	 Forge	 are	 frequently	 used	 in	 continuous	 integration	 environments.	 Automation	 of	 the	 build	 should	 include	 automating	 the	 integration,	 which	 often	 includes
deployment	 into	a	production-like	environment.	 In	many	cases,	the	build	script	not	only	compiles	binaries,	but	also	generates	documentation,	website	pages,	statistics	and	distribution
media	(such	as	Windows	MSI	files,	RPM	or	DEB	files).

Once	the	code	is	built,	all	tests	should	run	to	confirm	that	it	behaves	as	the	developers	expect	it	to	behave.

By	committing	regularly,	every	committer	can	reduce	the	number	of	conflicting	changes.	Checking	in	a	week's	worth	of	work	runs	the	risk	of	conflicting	with	other	features	and	can	be	very
difficult	to	resolve.	Early,	small	conflicts	in	an	area	of	the	system	cause	team	members	to	communicate	about	the	change	they	are	making.

Many	programmers	recommend	committing	all	changes	at	least	once	a	day	(once	per	feature	built),	and	in	addition	performing	a	nightly	build.

The	system	should	build	commits	to	the	current	working	version	in	order	to	verify	that	they	integrate	correctly.	A	common	practice	is	to	use	Automated	Continuous	Integration,	although
this	may	be	done	manually.	For	many,	continuous	integration	is	synonymous	with	using	Automated	Continuous	Integration	where	a	continuous	integration	server	or	daemon	monitors	the
version	control	system	for	changes,	then	automatically	runs	the	build	process.

The	build	needs	to	complete	rapidly,	so	that	if	there	is	a	problem	with	integration,	it	is	quickly	identified.

Having	 a	 test	 environment	 can	 lead	 to	 failures	 in	 tested	 systems	 when	 they	 deploy	 in	 the	 production	 environment,	 because	 the	 production	 environment	 may	 differ	 from	 the	 test
environment	in	a	significant	way.	However,	building	a	replica	of	a	production	environment	is	cost	prohibitive.	Instead,	the	pre-production	environment	should	be	built	to	be	a	scalable
version	of	the	actual	production	environment	to	both	alleviate	costs	while	maintaining	technology	stack	composition	and	nuances.

Making	builds	readily	available	to	stakeholders	and	testers	can	reduce	the	amount	of	rework	necessary	when	rebuilding	a	feature	that	doesn't	meet	requirements.	Additionally,	early	testing
reduces	the	chances	that	defects	survive	until	deployment.	Finding	errors	earlier	also,	in	some	cases,	reduces	the	amount	of	work	necessary	to	resolve	them.

It	should	be	easy	to	find	out	where/whether	the	build	breaks	and	who	made	the	relevant	change.

Most	CI	systems	allow	the	running	of	scripts	after	a	build	finishes.	In	most	situations,	it	is	possible	to	write	a	script	to	deploy	the	application	to	a	live	test	server	that	everyone	can	look
at.	A	further	advance	in	this	way	of	thinking	is	Continuous	Deployment,	which	calls	for	the	software	to	be	deployed	directly	into	production,	often	with	additional	automation	to	prevent
defects	or	regressions[5].

Continuous	Integration	emerged	 in	the	Extreme	Programming	(XP)	community,	and	XP	advocates	Martin	Fowler	and	Kent	Beck	 first	wrote	about	continuous	 integration	circa	1999.
Fowler's	paper[6]	is	a	popular	source	of	information	on	the	subject.	Beck's	book	Extreme	Programming	Explained
term.

Continuous	integration	has	many	advantages:

when	unit	tests	fail	or	a	bug	emerges,	developers	might	revert	the	codebase	back	to	a	bug-free	state,	without	wasting	time	debugging
developers	detect	and	fix	integration	problems	continuously	-	avoiding	last-minute	chaos	at	release	dates,	(when	everyone	tries	to	check	in	their	slightly	incompatible	versions).
early	warning	of	broken/incompatible	code
early	warning	of	conflicting	changes
immediate	unit	testing	of	all	changes
constant	availability	of	a	"current"	build	for	testing,	demo,	or	release	purposes
immediate	feedback	to	developers	on	the	quality,	functionality,	or	system-wide	impact	of	code	they	are	writing
frequent	code	check-in	pushes	developers	to	create	modular,	less	complex	code[citation	needed]

metrics	generated	from	automated	testing	and	CI	(such	as	metrics	for	code	coverage,	code	complexity,	and	features	complete)	focus	developers	on	developing	functional,	quality	code,
and	help	develop	momentum	in	a	team[citation	needed]

initial	setup	time	required
well-developed	test-suite	required	to	achieve	automated	testing	advantages
large-scale	refactoring	can	be	troublesome	due	to	continuously	changing	code	base

Make	the	build	self-testing

Everyone	commits	to	the	baseline	every	day

Every	commit	(to	baseline)	should	be	built

Keep	the	build	fast

Test	in	a	clone	of	the	production	environment

Make	it	easy	to	get	the	latest	deliverables

Everyone	can	see	the	results	of	the	latest	build

Automate	deployment

History

Advantages	and	disadvantages

Advantages

Disadvantages

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-433
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-Fowler.2C_Continuous_Integration-434
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR

www.manaraa.com

hardware	costs	for	build	machines	can	be	significant

Many	teams	using	CI	report	that	the	advantages	of	CI	well	outweigh	the	disadvantages.[8]	The	effect	of	finding	and	fixing	integration	bugs	early	in	the	development	process	saves	both
time	and	money	over	the	lifespan	of	a	project.

To	support	continuous	integration,	software	tools	such	as	automated	build	software	can	be	employed.

Software	tools	for	continuous	integration	include:

AnthillPro	—	continuous	integration	server	by	Urbancode
Apache	Continuum	—	continuous	integration	server	supporting	Apache	Maven	and	Apache	Ant.	Supports	CVS,	Subversion,	Ant,	Maven,	and	shell	scripts
Apache	Gump	—	continuous	integration	tool	by	Apache
Automated	Build	Studio	—	proprietary	automated	build,	continuous	integration	and	release	management	system	by	AutomatedQA
Bamboo	—	proprietary	continuous	integration	server	by	Atlassian	Software	Systems
BuildBot	—	Python/Twisted-based	continuous	build	system
BuildForge	-	proprietary	automated	build	engine	by	IBM	/	Rational
BuildMaster	—	proprietary	application	lifecycle	management	and	continuous	integration	tool	by	Inedo
CABIE	-	Continuous	Automated	Build	and	Integration	Environment	—	open	source,	written	in	Perl;	works	with	CVS,	Subversion,	AccuRev,	Bazaar	and	Perforce
Cascade	—	proprietary	continuous	integration	tool;	provides	a	checkpointing	facility	to	build	and	test	changes	before	they	are	committed
codeBeamer	—	proprietary	collaboration	software	with	built-in	continuous	integration	features
CruiseControl	—	Java-based	framework	for	a	continuous	build	process
CruiseControl.NET	—	.NET-based	automated	continuous	integration	server
CruiseControl.rb	-	Lightweight,	Ruby-based	continuous	integration	server	that	can	build	any	codebase,	not	only	Ruby,	released	under	Apache	Licence	2.0
ElectricCommander	—	proprietary	continuous	integration	and	release	management	solution	from	Electric	Cloud
FinalBuilder	Server	—	proprietary	automated	build	and	continuous	integration	server	by	VSoft	Technologies
Go	—	proprietary	agile	build	and	release	management	software	by	Thoughtworks
Jenkins	(formerly	known	as	Hudson)	—	MIT-licensed,	written	in	Java,	runs	in	servlet	container,	supports	CVS,	Subversion,	Mercurial,	Git,	StarTeam,	Clearcase,	Ant,	NAnt,	Maven,
and	shell	scripts
Software	Configuration	and	Library	Manager	—	software	configuration	management	system	for	z/OS	by	IBM	Rational	Software
QuickBuild	-	proprietary	continuous	integration	server	with	free	community	edition	featuring	build	life	cycle	management	and	pre-commit	verification.
TeamCity	—	proprietary	continuous-integration	server	by	JetBrains	with	free	professional	edition
Team	Foundation	Server	—	proprietary	continuous	integration	server	and	source	code	repository	by	Microsoft
Tinderbox	—	Mozilla-based	product	written	in	Perl
Rational	Team	Concert	—	proprietary	software	development	collaboration	platform	with	built-in	build	engine	by	IBM	including	Rational	Build	Forge

See	comparison	of	continuous	integration	software	for	a	more	in	depth	feature	matrix.

Duvall,	Paul	M.	(2007).	Continuous	Integration.	Improving	Software	Quality	and	Reducing	Risk.	Addison-Wesley.	

1.	 Cunningham,	Ward	(05	Aug	2009).	"Integration	Hell".	WikiWikiWeb.	http://c2.com/cgi/wiki?IntegrationHell.	Retrieved	19	Sept	2009
2.	 Brauneis,	David	(01	January	2010).	"[OSLC	Possible	new	Working	Group	-	Automation"].	open-services.net	Community	mailing	list
services.net/pipermail/community_open-services.net/2010-January/000214.html.	Retrieved	16	February	2010.

3.	 Taylor,	Bradley.	"Rails	Deployment	and	Automation	with	ShadowPuppet	and	Capistrano".	http://blog.railsmachine.com/articles/2009/02/10/rails-deployment-and-automation-with-
shadowpuppet-and-capistrano/.

4.	 Fowler,	Martin.	"Continuous	Integration".	http://martinfowler.com/articles/continuousIntegration.html#PracticesOfContinuousIntegration
5.	 See	Continuous	deployment	in	5	easy	steps	-	O'Reilly	Radar	(http://radar.oreilly.com/2009/03/continuous-deployment-5-eas.html)
impossible	fifty	times	a	day.	-	Timothy	Fitz	(http://timothyfitz.wordpress.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/)

6.	 Fowler,	Martin.	"Continuous	Integration".	http://www.martinfowler.com/articles/continuousIntegration.html.
7.	 Beck,	Kent	(1999).	Extreme	Programming	Explained.	ISBN	0-201-61641-6.
8.	 Richardson,	Jared	(September	2008).	"Agile	Testing	Strategies	at	No	Fluff	Just	Stuff	Conference".	Boston,	Massachusetts

Software

Further	reading

References

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-436
https://en.wikipedia.org/wiki/Paul_Duvall
https://en.wikipedia.org/wiki/Ward_Cunningham
http://c2.com/cgi/wiki?IntegrationHell
http://c2.com/cgi/wiki?IntegrationHell
https://en.wikipedia.org/wiki/David_Brauneis
http://open-services.net/pipermail/community_open-services.net/2010-January/000214.html
http://open-services.net/pipermail/community_open-services.net/2010-January/000214.html
https://en.wikipedia.org/wiki/Bradley_Taylor
http://blog.railsmachine.com/articles/2009/02/10/rails-deployment-and-automation-with-shadowpuppet-and-capistrano/
http://blog.railsmachine.com/articles/2009/02/10/rails-deployment-and-automation-with-shadowpuppet-and-capistrano/
https://en.wikipedia.org/wiki/Martin_Fowler
http://martinfowler.com/articles/continuousIntegration.html#PracticesOfContinuousIntegration
http://martinfowler.com/articles/continuousIntegration.html#PracticesOfContinuousIntegration
http://radar.oreilly.com/2009/03/continuous-deployment-5-eas.html
http://timothyfitz.wordpress.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/
https://en.wikipedia.org/wiki/Martin_Fowler
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
https://en.wikipedia.org/wiki/Kent_Beck
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikibooks.org/wiki/Special:BookSources/0-201-61641-6
http://www.nofluffjuststuff.com/

www.manaraa.com

Comparison	of	continuous	integration	software	(http://en.wikipedia.org/wiki/Comparison_of_continuous_integration_software)
Continuous	integration	(http://www.martinfowler.com/articles/continuousIntegration.html)	by	Martin	Fowler	(an	introduction)
Continuous	Integration	at	the	Portland	Pattern	Repository	(http://www.c2.com/cgi/wiki?ContinuousIntegration)
Cross	platform	testing	at	the	Portland	Pattern	Repository	(http://c2.com/cgi/wiki?CrossPlatformTesting)
Continuous	Integration	Server	Feature	Matrix	(http://confluence.public.thoughtworks.org/display/CC/CI+Feature+Matrix)
Continuous	Integration:	The	Cornerstone	of	a	Great	Shop	(http://www.methodsandtools.com/archive/archive.php?id=42)
A	Recipe	for	Build	Maintainability	and	Reusability	(http://jayflowers.com/joomla/index.php?option=com_content&task=view&id=26)
Continuous	Integration	anti-patterns	(http://www.ibm.com/developerworks/java/library/j-ap11297/)	by	Paul	Duvall
Extreme	programming	(http://www.extremeprogramming.org/rules/integrateoften.html)

A	bug	tracking	system	is	a	software	application	that	is	designed	to	help	quality	assurance	and	programmers	keep	track	of	reported	software	bugs	in	their	work.	It	may	be	regarded	as
a	type	of	issue	tracking	system.

Many	bug-tracking	systems,	such	as	those	used	by	most	open	source	software	projects,	allow	users	to	enter	bug	reports	directly.	Other	systems	are	used	only	internally	in	a	company	or
organization	doing	software	development.	Typically	bug	tracking	systems	are	integrated	with	other	software	project	management	applications.

Having	a	bug	tracking	system	is	extremely	valuable	in	software	development,	and	they	are	used	extensively	by	companies	developing	software	products.	Consistent	use	of	a	bug	or	issue
tracking	system	is	considered	one	of	the	"hallmarks	of	a	good	software	team".[1]

A	major	component	of	a	bug	tracking	system	is	a	database	that	records	 facts	about	known	bugs.	Facts	may	 include	the	time	a	bug	was	reported,	 its	severity,	 the	erroneous	program
behavior,	and	details	on	how	to	reproduce	the	bug;	as	well	as	the	identity	of	the	person	who	reported	it	and	any	programmers	who	may	be	working	on	fixing	it.

Typical	bug	tracking	systems	support	the	concept	of	the	life	cycle	for	a	bug	which	is	tracked	through	status	assigned	to	the	bug.	A	bug	tracking	system	should	allow	administrators	to
configure	permissions	based	on	status,	move	the	bug	to	another	status,	or	delete	the	bug.	The	system	should	also	allow	administrators	to	configure	the	bug	statuses	and	to	what	status	a
bug	in	a	particular	status	can	be	moved.	Some	systems	will	e-mail	interested	parties,	such	as	the	submitter	and	assigned	programmers,	when	new	records	are	added	or	the	status	changes.

The	main	benefit	of	a	bug-tracking	system	is	to	provide	a	clear	centralized	overview	of	development	requests	(including	both	bugs	and	improvements,	the	boundary	is	often	fuzzy),	and
their	state.	The	prioritized	list	of	pending	items	(often	called	backlog)	provides	valuable	input	when	defining	the	product	roadmap,	or	maybe	just	"the	next	release".

In	a	corporate	environment,	a	bug-tracking	system	may	be	used	to	generate	reports	on	the	productivity	of	programmers	at	 fixing	bugs.	However,	this	may	sometimes	yield	 inaccurate
results	because	different	bugs	may	have	different	levels	of	severity	and	complexity.	The	severity	of	a	bug	may	not	be	directly	related	to	the	complexity	of	fixing	the	bug.	There	may	be
different	opinions	among	the	managers	and	architects.

A	 local	 bug	 tracker	 (LBT)	 is	 usually	 a	 computer	 program	used	 by	 a	 team	 of	 application	 support	 professionals	 (often	 a	 help	 desk)	 to	 keep	 track	 of	 issues	 communicated	 to	 software
developers.	Using	 an	LBT	allows	 support	professionals	 to	 track	bugs	 in	 their	 "own	 language"	 and	not	 the	 "language	 of	 the	developers."	 In	 addition,	 a	LBT	allows	 a	 team	of	 support
professionals	to	track	specific	information	about	users	who	have	called	to	complain	—	this	information	may	not	always	be	needed	in	the	actual	development	queue.	Thus,	there	are	two
tracking	systems	when	an	LBT	is	in	place.

Bug	and	issue	tracking	systems	are	often	implemented	as	a	part	of	integrated	project	management	systems.	This	approach	allows	including	bug	tracking	and	fixing	in	a	general	product
development	process,	fixing	bugs	in	several	product	versions,	automatic	generation	of	a	product	knowledge	base	and	release	notes.

Some	bug	trackers	are	designed	to	be	used	with	distributed	revision	control	software.	These	distributed	bug	trackers	allow	bug	reports	to	be	conveniently	read,	added	to	the	database	or
updated	while	a	developer	is	offline.[3]	Distributed	bug	trackers	include	Bugs	Everywhere,	and	Fossil.

Recently,	 commercial	bug	 tracking	 systems	have	also	begun	 to	 integrate	with	distributed	version	 control.	FogBugz,	 for	 example,	 enables	 this	 functionality	via	 the	 source-control	 tool,
Kiln.[4]

Although	wikis	and	bug	tracking	systems	are	conventionally	viewed	as	distinct	types	of	software,	ikiwiki	can	also	be	used	as	a	distributed	bug	tracker.	It	can	manage	documents	and	code
as	well,	in	an	integrated	distributed	manner.	However,	its	query	functionality	is	not	as	advanced	or	as	user-friendly	as	some	other,	non-distributed	bug	trackers	such	as	Bugzilla.
statements	can	be	made	about	org-mode,	although	it	is	not	wiki	software	as	such.

While	traditional	test	management	tools	such	as	HP	Quality	Center	and	Rational	Software	come	with	their	own	bug	tracking	systems.	Other	tools	integrate	with	popular	bug	tracking
systems.[citation	needed]

1.	 Joel	Spolsky	(November	08	2000).	"Painless	Bug	Tracking".	http://www.joelonsoftware.com/articles/fog0000000029.html
2.	 Multiple	(wiki).	"Bug	report".	Docforge.	http://docforge.com/wiki/Bug_report.	Retrieved	2010-03-09.
3.	 Jonathan	Corbet	(May	14	2008).	"Distributed	bug	tracking".	LWN.net.	http://lwn.net/Articles/281849/.	Retrieved	7	January	2009

External	links

Bug	Tracking

Components

Usage

Bug	tracking	systems	as	a	part	of	integrated	project	management	systems

Distributed	bug	tracking

Bug	tracking	and	test	management

References

http://en.wikipedia.org/wiki/Comparison_of_continuous_integration_software
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.c2.com/cgi/wiki?ContinuousIntegration
http://c2.com/cgi/wiki?CrossPlatformTesting
http://confluence.public.thoughtworks.org/display/CC/CI+Feature+Matrix
http://www.methodsandtools.com/archive/archive.php?id=42
http://jayflowers.com/joomla/index.php?option=com_content&task=view&id=26
http://www.ibm.com/developerworks/java/library/j-ap11297/
http://www.extremeprogramming.org/rules/integrateoften.html
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-437
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-lwn-distributed-439
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version#cite_note-440
https://en.wikibooks.org/wiki/Wikibooks:OR
http://www.joelonsoftware.com/articles/fog0000000029.html
http://www.joelonsoftware.com/articles/fog0000000029.html
http://docforge.com/wiki/Bug_report
http://docforge.com/wiki/Bug_report
http://lwn.net/Articles/281849/
http://lwn.net/Articles/281849/

www.manaraa.com

4.	 "FogBugz	Features".	Fogbugz.com.	http://www.fogcreek.com/FogBugz/learnmore.html.	Retrieved	2010-10-29.
5.	 Joey	Hess	(6	April	2007).	"Integrated	issue	tracking	with	Ikiwiki".	LinuxWorld.com.	IDG.	http://www.linuxworld.com/news/2007/040607-integrated-issue-tracking-ikiwiki.html
Retrieved	7	January	2009.

Bug	Tracking	Software	(http://www.dmoz.org/Computers/Software/Configuration_Management/Bug_Tracking//)
How	to	Report	Bugs	Effectively	(http://www.chiark.greenend.org.uk/~sgtatham/bugs.html)
List	of	distributed	bug	tracking	software	(http://dist-bugs.kitenet.net/software/)

Introduction	to	Software	Engineering/Tools/Decompiler

Introduction	to	Software	Engineering/Tools/Obfuscation

Re-engineering

Introduction	to	Software	Engineering/Reengineering

Introduction	to	Software	Engineering/Reengineering/Reverse	Engineering

Introduction	to	Software	Engineering/Reengineering/Round-trip	Engineering

Authors
Introduction	to	Software	Engineering/Authors

License

GNU	Free	Documentation	License
GNU	Free	Documentation	License

Note:	current	version	of	this	book	can	be	found	at	http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering

Retrieved	from	"https://en.wikibooks.org/w/index.php?
title=Introduction_to_Software_Engineering/Print_version&oldid=3330721"

This	page	was	last	edited	on	20	November	2017,	at	19:50.

Text	is	available	under	the	Creative	Commons	Attribution-ShareAlike	License.;	additional	terms	may	apply.	By
using	this	site,	you	agree	to	the	Terms	of	Use	and	Privacy	Policy.

External	links

Decompiler

Obfuscation

Introduction

Reverse	Engineering

Round-trip	Engineering

http://www.fogcreek.com/FogBugz/learnmore.html
http://www.fogcreek.com/FogBugz/learnmore.html
http://www.linuxworld.com/news/2007/040607-integrated-issue-tracking-ikiwiki.html
http://www.linuxworld.com/news/2007/040607-integrated-issue-tracking-ikiwiki.html
http://www.dmoz.org/Computers/Software/Configuration_Management/Bug_Tracking//
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://dist-bugs.kitenet.net/software/
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/Decompiler
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/Obfuscation
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Reengineering
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Reengineering/Reverse_Engineering
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Reengineering/Round-trip_Engineering
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Authors
https://en.wikibooks.org/wiki/GNU_Free_Documentation_License
http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering
https://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&oldid=3330721
https://creativecommons.org/licenses/by-sa/3.0/
https://wikimediafoundation.org/wiki/Terms_of_Use
https://wikimediafoundation.org/wiki/Privacy_policy

